基于狀態(tài)機(jī)的信號發(fā)生器-外文翻譯_第1頁
基于狀態(tài)機(jī)的信號發(fā)生器-外文翻譯_第2頁
基于狀態(tài)機(jī)的信號發(fā)生器-外文翻譯_第3頁
基于狀態(tài)機(jī)的信號發(fā)生器-外文翻譯_第4頁
基于狀態(tài)機(jī)的信號發(fā)生器-外文翻譯_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、浙江師范大學(xué)本科畢業(yè)設(shè)計(論文)外文翻譯譯文:智能火災(zāi)報警器作者:杰弗里介紹:社會面臨著火災(zāi)預(yù)警的日益增長趨勢,需求可靠的火災(zāi)探測系統(tǒng),盡早的給予警告。這個需求使我們必須關(guān)注有關(guān)問題:一些虛假或無用的火災(zāi)報警器會嚴(yán)重消弱安裝報警系統(tǒng)的效力、中斷業(yè)務(wù),而且最糟糕的是,可能會導(dǎo)致居民忽視在實(shí)際火災(zāi)中的防報警系統(tǒng),認(rèn)為那些系統(tǒng)沒用。從歷史上看:火災(zāi)報警器制造商已經(jīng)通過兩種方法解決不必要的報警:1、探測器的靈敏度。維護(hù)人員可以設(shè)置單個不敏感的探測器,當(dāng)設(shè)備安裝后,以紓緩誤報。因?yàn)橥ǔG闆r下,靈敏度是很少增加,因此只有降低探測器靈敏度,從而提高檢測能力。2、使用報警驗(yàn)證。本質(zhì)上介紹的就是一種驗(yàn)證檢測延遲

2、時間的報警,就是當(dāng)探測器檢測到報警信號時,火災(zāi)報警系統(tǒng)等待指定程序的延遲時間(通常為30秒延遲),以確認(rèn)該探測器繼續(xù)檢測報警條件,當(dāng)達(dá)到探測器的延遲時間后就報警,報警序列就驅(qū)動。降低探測器的靈敏度和使用報警驗(yàn)證可以減少不必要的報警的潛力,通知群眾的時間可以被延時。智能火災(zāi)報警系統(tǒng)已經(jīng)被開發(fā)出來來滿足不必要的警報,同時也保持檢測器理想水平的靈敏度。由于制造商之間的不同,使智能系統(tǒng)可以提供很多好處,包括更快了解群眾數(shù)量,增加檢測的靈敏度,也降低了不必要的警報潛力。此外,智能系統(tǒng)可以提供用戶所需的檢測維護(hù)功能。下面介紹一些智能報警系統(tǒng)的特點(diǎn):1、智能比的常規(guī)器件人工智能已成為一個在許多涉及流行語的領(lǐng)

3、域中的技術(shù)術(shù)語。智能系統(tǒng)已被應(yīng)用在幾乎所有技術(shù)領(lǐng)域,涉及的行業(yè)十分廣泛,從航天飛機(jī)到許多電腦游戲設(shè)計的系統(tǒng)。所謂“人工情報”通常指關(guān)于系統(tǒng)的學(xué)習(xí)及分析原因的能力。一種新的消防報警產(chǎn)品數(shù)量現(xiàn)已面世,其中有許多是作為智能火災(zāi)報警系統(tǒng)部件標(biāo)記。雖然智能火災(zāi)報警系統(tǒng)不能評為先進(jìn)系統(tǒng),由于一些納入這種系統(tǒng)中的簡單邏輯技術(shù)都被認(rèn)為是復(fù)雜的人工智能。1本科畢業(yè)設(shè)計(論文)外文翻譯智能火災(zāi)報警系統(tǒng)最初是尋址系統(tǒng)的另一個名字。尋址系統(tǒng)為每個檢測設(shè)備提供了一個獨(dú)一無二的地址,給用戶增加了信息水平。目前,智能火災(zāi)報警系統(tǒng)探測器,使用決策算法來確定報警條件。而其他人使用多層或個人資料的方法比較,采用多傳感器的一些做法

4、:在大多數(shù)情況下,是通過接收一個或多個傳感器對煙霧濃度和溫度的測量,然后通過特定的算法分析這些信息確定這些測量是否表明可能存在火災(zāi)情況。有些智能檢測報警裝置作出一切決定,來報告報警系統(tǒng)控制設(shè)備的其他報警的決定條件。相反,傳統(tǒng)的火災(zāi)報警探測器使用設(shè)置一個單一傳感器的閾值來確定報警條件。因此,只有在一個特定的水平中,傳統(tǒng)的設(shè)備設(shè)計才到達(dá)報警的硬性條件。2、智能設(shè)備智能消防報警設(shè)備標(biāo)記通常被認(rèn)為是模擬式探測器的影響。模擬式探測器提供持續(xù)的實(shí)時測量,而物業(yè)內(nèi)的空氣是一個受到周圍空氣的影響的檢測室。這些探測器可以設(shè)定,如傳統(tǒng)的報警探測器,開始對這些序列的閾值基礎(chǔ)進(jìn)行測量。此外,許多智能探測器使用算法來處

5、理低于設(shè)定的值來表示報警。這些都在這里定義為處理信號。這些信號可與其他的探測器或空間內(nèi)的傳感器的模擬信號的數(shù)量進(jìn)行比較得到與一些受煙霧探測器影響或預(yù)先確定的火災(zāi)實(shí)驗(yàn)的信號的技術(shù),這些技術(shù)提高了檢測靈敏度,同時也減少了潛在的誤報。在其上市或被批準(zhǔn)之前,智能檢測器就必須滿足常規(guī)檢測的標(biāo)準(zhǔn)。因此,當(dāng)智能探測器在指定為探測信號到達(dá)報警閾值,就必須啟動一個報警信號。3、自動靈敏度補(bǔ)償 灰塵,污垢,濕度,年齡等其他環(huán)境因素會影響煙霧探測器的靈敏度。這些因素會接近探測器或進(jìn)一步從報警閾值中進(jìn)行閱讀傳感器的基地或污染改變傳感器的類型。由于這個基地閱讀是轉(zhuǎn)移的,煙霧濃度過高或過低都需要傳統(tǒng)的探測器達(dá)到預(yù)先設(shè)定的

6、報警閾值。這使得更容易受到隨著時間的推移使煙霧探測器產(chǎn)生不必要的激活延遲報警。許多模擬探測器的設(shè)計同時結(jié)合自動探測器靈敏度補(bǔ)償,或“漂移”賠償,“漂移”的補(bǔ)償是包括一些智能檢測,并討論了提供的背景。由于探測器的靈敏度范圍連續(xù),在報警閾值可高于或低于模擬信號轉(zhuǎn)移的基礎(chǔ)上,如果探測器的靈敏度調(diào)高,在報警閾值向上移動范圍內(nèi)增加補(bǔ)償了探測器靈敏度范圍的秘密讀數(shù)。當(dāng)隨著時間的推移,模擬信號的上移接近靈敏度極限,探測器提供了一個維修的信號,在通知用戶的服務(wù)要求之前,發(fā)生不必要的警報。這使得探測器的污染和環(huán)境因素補(bǔ)償,同時允許以獲得最佳靈敏度探測器。4、補(bǔ)償自動靈敏度與預(yù)設(shè)靈敏度調(diào)整探測器操作靈敏度類似自動

7、補(bǔ)償?shù)?。這種設(shè)計能夠根據(jù)預(yù)設(shè)條件調(diào)節(jié)靈敏度。經(jīng)常需要一些可以在探測器的靈敏度增加或減少的空間。例如,一個受到高度保護(hù)的空間,可能需要保護(hù)在下班時間或夜晚俱樂部可能需要在正常工作時間減少了探測器的靈敏度,以補(bǔ)償煙霧濃度的更高的水平。這使得最佳的靈敏度在每個給定的條件空間內(nèi)使用。5、曲線比較火災(zāi)往往有獨(dú)特的煙霧和特殊燃料燃燒后的熱能量,例如:在塑料材料火災(zāi)往往會產(chǎn)生比易燃液體火災(zāi)的煙霧。一些制造商已與火災(zāi)報警細(xì)節(jié)上刻畫了大范圍的燃料燃燒產(chǎn)物專有數(shù)據(jù)庫的發(fā)展。這些數(shù)據(jù)基本包括時間相關(guān)的屬性,如光電探測器的讀數(shù),離子化檢測器的讀數(shù)和溫度讀數(shù),及測量的方法。而數(shù)據(jù)的測量是根據(jù)燃料包和具體特點(diǎn)的燃料每包的

8、類型決定。雖然個別火災(zāi)報警廠家使用不同的方法,模擬從個體探測器測量,火災(zāi)進(jìn)行了比較與測量預(yù)定值。這使探測器過濾掉通常不屬于與火災(zāi)有關(guān)的條件。該算法是基于測試比較得到的預(yù)定值。因此,有性能(如遮蔽等)方面被忽略。(當(dāng)昆蟲進(jìn)入離子感煙室或大尖峰值由于無線電頻率干擾可以識別并忽略。)由于報警驗(yàn)證允許探測器使用時間延遲確認(rèn)報警條件時,探測器可以使用警報器核查延遲時間來驗(yàn)證信號。如果預(yù)報警值通常是指與用火條件一致時,報警驗(yàn)證,并立即做好報警準(zhǔn)備。但是由于該報警系統(tǒng)的不需要的報警條件被過濾掉了,檢測靈敏度可顯性降低,使火災(zāi)早期的被發(fā)現(xiàn)。各個廠家使用這種不同的方法來測試,而一些小組甚至從不同環(huán)境中的測試結(jié)果

9、,例如:辦公室,倉庫,住宅,或者醫(yī)院,而其他人使用一個單一的具有代表性的方法來比較測得實(shí)際的讀數(shù)。6、多傳感器的比較檢測儀采用多傳感器比較操作類似于前面所述的單傳感器比較探測器。然而,檢測方法有多種,因此電離,光電,熱探測器的組合被納入一個單一的檢測裝置。該設(shè)備可以比較來自多個不同來源的信息。這種方法可以過濾掉不需要的能力、條件,提高靈敏度。例如,在沒有任何遮蔽快速上升的溫度的情況下,可以被過濾掉。另一個好處可能是,這些探測器使用一些算法處理來自傳感器的所有的模擬值,然后可以送入每個傳感元件,分析報警的條件,進(jìn)一步提高加強(qiáng)穩(wěn)定性,靈敏度及可靠性。7、多層比較作為橫跨天花板,煙流往往影響到得不止

10、一個探測器。多層利用這一趨勢比較實(shí)用。受影響的探測器分析相鄰探測器濃度條件范圍。報警時啟動相鄰探測器濃度情況的顯示,在類似的表示關(guān)聯(lián)的值。這些探測器可以比較多個地點(diǎn)和消除昆蟲或無線電頻率的干擾而引發(fā)的局部峰值。這使得當(dāng)報警閾值下降時更快的檢測時間,從而提高了系統(tǒng)的穩(wěn)定性。8、其他特點(diǎn)強(qiáng)大的系統(tǒng)處理器多有附加功能,如:自動尋址:探測器自動判斷一個獨(dú)立的地址后融入到系統(tǒng)中。設(shè)置的裝置:可以設(shè)置一個或多個裝置。檢測內(nèi)存:探測器能存儲各自信息,包括環(huán)境補(bǔ)償、上次維修的日期、模擬信號、去年警報率等。智能通知:允許以一個電路覆蓋多個獨(dú)立的電路后,通知設(shè)備可以得到離散的地址,這也使得個別設(shè)備的測試安全。智能

11、火災(zāi)報警系統(tǒng)可以提供額外的信息來控制設(shè)備,并最終通知給用戶。由于每個建筑布局和環(huán)境都是獨(dú)一無二的,因此必須提供最好的方法對這些系統(tǒng)的應(yīng)用仔細(xì)的評估。模擬探測器可以與已知值條件比較后提供更多的信息,但是這種科技現(xiàn)今提供了許多增強(qiáng)的制度。智能探測器將很可能成為應(yīng)用于許多方面的典型或標(biāo)準(zhǔn)探測器。目前,一些智能設(shè)備僅比標(biāo)準(zhǔn)的設(shè)備造價高,隨著智能技術(shù)降低成本,越來越多的這些設(shè)備將用于火災(zāi)報警系統(tǒng)中。最后,要注意所有的探測器,無論是組合的還是智能化得,都需要維修才能有效。因此探測器或火災(zāi)報警系統(tǒng)的所有維修方案應(yīng)被看作為火災(zāi)報警系統(tǒng)的重要方面之一。8本科畢業(yè)設(shè)計(論文)外文翻譯原文: Intelligent

12、 Fire Alarm SystemsBy Jeffrey S. Tubbs, P.E.INTRODUCTIONThe fire protection community faces growing needs for reliable fire-detection systems that give the earliest possible warning of fire. These needs draw attention to problems associated with false or unwanted fire alarms.Unwanted fire alarms can

13、 seriously undermine the effectiveness of installed alarm systems, interrupt business, and, at worst, may cause occupants to ignore the fire alarm system during an actual fire. Historically, fire alarm manufacturers have addressed unwanted alarms through two approaches: Decreasing detector sensitivi

14、ty. Maintenance personnel are able to set individual detectors to be less sensitive after the devices are installed to alleviate false alarms. Typically, detector sensitivity is only decreased; the sensitivity is rarely increased to improve detection capability. Using alarm verification. Alarm verif

15、ication essentially introduces a detection delay time. When the detector reports an alarm condition, the fire alarm system waits for a specified programmed delay time (typically, a 30-second delay) to confirm that the detector continues to report an alarm condition. If the detector is in alarm after

16、 the delay time, the alarm sequence is actuated.Although decreasing detector sensitivity and using alarm verification can reduce the potential for unwanted alarms, occupant notification may also be delayed Intelligent fire alarm systems have been developed to address unwanted alarms while maintainin

17、g the desired level of detector sensitivity. Although the capabilities of intelligent systems vary between manufacturers, intelligent systems can provide a number of benefits, including faster occupant notification, increased detector sensitivity, and decreased potential for unwanted alarms. Also, i

18、ntelligent systems can provide users with notification of needed detector maintenance.INTELLIGENT VS. CONVENTIONAL DEVICESArtificial intelligence has become a buzzword in many fields involving technical products. Intelligent systems have been used in virtually every tech-nical field involving a wide

19、 range of industries, from systems designed for the space shuttle to many computer games. The term “artificial intelligence”is typically associated with systems that have the ability to reason or learn. A number of new fire alarm products have become available, many of which are labeled as component

20、s of intelligent fire alarm systems. While intelligent fire alarm systems are not as advanced and sophisticated as what is typically thought of as artificial intelligence, they do incorporate some of the simple logic techniques incorporated in such systems. Intelligent fire alarm systems were initia

21、lly another name for addressable systems. Addressable systems provide aunique address for each detection device, providing a increased level of information to the user. Todays intelli-gent systems do more. Currently, intelligent fire alarm sys-tems incorporate detectors that use decision-making algo

22、rithms to deter-mine alarm conditions. Some employ multisensor approaches, while others use multidetector approaches or profile comparisons. In most cases, measure-ments, such as smoke concentration and temperature, are received by one or more sensors. This information is then analyzed by specific a

23、lgorithms to determine if these measurements indi-cate that a fire condition may be pre-sent. Some intelligent detection devices make all the alarm decisions, while oth-ers report conditions to the alarm sys-tem control equipment which makes the alarm decision. Conversely, conven-tional fire alarm d

24、etectors use set thresholds in a single sensor to deter-mine alarm conditions. Thus, conven-tional devices are rigidly designed to signal alarm conditions only after a spe-cific level has been reached.NTELLIGENT DEVICESFire alarm devices labeled as intelligent are usually thought of as analog type d

25、etectors. Analog type detectors provide continuous, realtime measurements of air properties within a detection chamber which is, in turn, affected by the surrounding air. These detectors can have set thresholds such as conventional detectors to initiate an alarm sequence based upon these measure-men

26、ts. In addition, many intelligent detectors use algorithms to process lev-els lower than those threshold values set to indicate an alarm. These are defined here as prealarm signals. Prealarm signals can be compared with a number of analog signals from other detectors and sensors within the space, co

27、mpared with previous signals received from the affected detector or compared with predetermined fire pro-files obtained through fire tests. These techniques allow an increase in detector sensitivity, while decreasing the potential for false alarm potential.To be listed or approved, intelligent detec

28、tors must meet the criteria for conventional detectors. As such, when an intelligent detector reaches the alarm threshold specified for conventional detectors, it must initiate an alarm signal. A discussion of some of the decisionmaking algorithms used in intelligent fire alarm systems follows. AUTO

29、MATIC SENSITIVITY COMPENSATIONDust, dirt, humidity, age, and other environmental factors affect smoke detector sensitivity. These factors shift the base reading of detectors closer to or further from an alarm threshold,depending upon the type of contamination and type of sensor. As this base reading

30、 is shifted, higher or lower concentrations of smoke are required for conventional detectors to reach the pre-set alarm threshold. This makes smoke detectors more susceptible to unwanted alarms or delayed activation over time.Many analog detectors are designed with automatic sensitivity compensa-tio

31、n. While detectors incorporating automatic sensitivity compensation, or“drift” compensation, may or may not be classified as intelligent detectors per the definition suggested within NEMA Training Manual on Fire Alarm Systems,“drift” compensation is included within some intelligent detection and is

32、discussed here to provide background.Since the detectors have a continuous range of sensitivities, the alarm threshold can be shifted higher or lower, based on the analog prealarm signal. If the sensitivity increases as the detector becomes dirty, the alarm threshold is shifted upward within the det

33、ectors range of sensitivity, compensating for the increased analog readings. When, over time, the analog signal is shifted close to the upper sensitivity limit, the detector provides a maintenance signal, notifying the user of service requirements before unwanted alarms occur. This allows the detect

34、or to compensate for contamination and environmental factors while allowing for optimum detector sensitivity. PRESET SENSITIVITY ADJUSTMENTDetectors with preset sensitivity adjustments operate similar to those with automatic sensitivity compensa-tion. This design adjusts the sensitivity according to

35、 preset conditions. Some spaces may routinely require an increase or decrease in detector sensi-tivity. For instance, a highly protected space may require a higher level of protection during offhours or a night club may require a decrease in detector sensitivity during normal business hours to compe

36、nsate for occupant smoking. This allows optimum sensitivities to be used for each predictably changing background condition within a given space.PROFILE COMPARISONFires tend to have unique smoke and heat profiles based upon specific fuels burning. For instance, fires in plastic materials tend to pro

37、duce more smoke than fires in flammable liquids. Some fire alarm manufacturers have devel-oped proprietary databases with details characterizing products of combustion for a large range of fuels. These data-bases include measurements of time-dependent properties, such as photo-electric detector read

38、ings, ionization detector readings, and temperature readings. Data have been grouped according to fuel packages and specific traits have been determined for each type of fuel package.Although individual fire alarm manu-facturers use different methods, analog measurements from individual detectors ar

39、e compared with predetermined val-ues obtained in fire tests. This allows detectors to filter out conditions that are not typically associated with fires. The comparison algorithm is based on the predetermined values obtained from testing. Therefore, large spikes in properties such as obscuration no

40、ticed when insects enter smoke chambers or large spikes in ionization values due to radio frequency interference can be recognized and ignored. Since alarm verification allows detec-tors to use a time delay to confirm alarm conditions, the detector can use the alarm verification delay time to ana-ly

41、ze the prealarm signal. If the pre-alarm value is consistent with condi-tions typically associated with fire con-ditions, the alarm is verified, and an alarm is reported immediately. Since unwanted alarm conditions are filtered out, detector sensitivities can be signifi-cantly lowered, allowing earl

42、y detection of fires.Various manufacturers use different methods with this approach. Some group the test results from various environments such as offices, ware-houses, or hospitals, while others use a single-representative approach to compare recorded readings to actual readings.MULTISENSOR COMPARI

43、SONDetectors using multisensor compar-isons operate similar to single-sensor comparison detectors described earlier. However, several methods of detection are used. Combinations of ionization, photoelectric, and heat detectors are incorporated into a single detection device. This device can then com

44、pare information from several different sources. This approach may enhance the ability to filter out unwanted condi-tions and allows for increased sensitivi-ties. For instance, a quick rise in obscu-ration, without any associated rise in temperature, can be filtered out. Another benefit may be that

45、these detectors use algorithms to process the analog values from all of the sensors. The conditions for reporting an alarm can then be based upon a combination of inputs from each sensing element, which further increases reliability by enhancing stability, sensitivity, or both.MULTIDETECTOR COMPARIS

46、ONAs smoke flows across a ceiling, it tends to affect more than a single detector. Multidetector comparisons make use of this trend. Affected detec-tors analyze adjacent detector prealarm conditions. Alarms are initiated when the prealarm conditions of adjacent detectors indicate a similar rise in t

47、he associated value. Similar to the detec-tors that compare profiles, these detec-tors can compare multiple locations and eliminate local spikes caused by an insect or radio frequency interference.This allows decreased alarm thresholds,faster detection times, and greater sys-tem stability.OTHER FEATURESPowerful system processors allow additional features, such as: Automatic Addressing: detectors automatically determine an inde-pendent address and integrate it into the system. S

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論