版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、第五節(jié)第五節(jié)復(fù)合函數(shù)的偏導(dǎo)數(shù)和全微分復(fù)合函數(shù)的偏導(dǎo)數(shù)和全微分證證),()(tttu 則則);()(tttv 一、鏈?zhǔn)椒▌t一、鏈?zhǔn)椒▌t定理如果函數(shù)定理如果函數(shù))(tu 及及)(tv 都在點都在點t可可導(dǎo),函數(shù)導(dǎo),函數(shù)),(vufz 在對應(yīng)點在對應(yīng)點),(vu具有連續(xù)偏具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)導(dǎo)數(shù),則復(fù)合函數(shù))(),(ttfz 在對應(yīng)點在對應(yīng)點t可可導(dǎo),且其導(dǎo)數(shù)可用下列公式計算:導(dǎo),且其導(dǎo)數(shù)可用下列公式計算: dtdvvzdtduuzdtdz ,獲得增量獲得增量設(shè)設(shè)tt 由由于于函函數(shù)數(shù)),(vufz 在在點點),(vu有有連連續(xù)續(xù)偏偏導(dǎo)導(dǎo)數(shù)數(shù),21vuvvzuuzz 當(dāng)當(dāng)0 u,0 v時,時,
2、01 ,02 tvtutvvztuuztz 21 當(dāng)當(dāng)0 t時,時, 0 u,0 v,dtdutu ,dtdvtv .lim0dtdvvzdtduuztzdtdzt 上定理的結(jié)論可推廣到中間變量多于兩個的情況上定理的結(jié)論可推廣到中間變量多于兩個的情況.如如dtdwwzdtdvvzdtduuzdtdz uvwtz以上公式中的導(dǎo)數(shù)以上公式中的導(dǎo)數(shù) 稱為稱為dtdz 上定理還可推廣到中間變量不是一元函數(shù)上定理還可推廣到中間變量不是一元函數(shù)而是多元函數(shù)的情況:而是多元函數(shù)的情況:).,(),(yxyxfz 如果如果),(yxu 及及),(yxv 都在點都在點),(yx具有對具有對x和和y的偏導(dǎo)數(shù),且函
3、數(shù)的偏導(dǎo)數(shù),且函數(shù)),(vufz 在對應(yīng)在對應(yīng)點點),(vu具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)具有連續(xù)偏導(dǎo)數(shù),則復(fù)合函數(shù)),(),(yxyxfz 在對應(yīng)點在對應(yīng)點),(yx的兩個偏的兩個偏導(dǎo)數(shù)存在,且可用下列公式計算導(dǎo)數(shù)存在,且可用下列公式計算 xvvzxuuzxz , yvvzyuuzyz .uvxzy鏈?zhǔn)椒▌t如圖示鏈?zhǔn)椒▌t如圖示 xz uzxu vz,xv yz uzyu vz.yv 類似地再推廣,設(shè)類似地再推廣,設(shè)),(yxu 、),(yxv 、),(yxww 都在點都在點),(yx具有對具有對x和和y的偏導(dǎo)數(shù),復(fù)合的偏導(dǎo)數(shù),復(fù)合函數(shù)函數(shù)),(),(),(yxwyxyxfz 在對應(yīng)點在對應(yīng)點),
4、(yx兩個偏導(dǎo)數(shù)存在,且可用下列公式計算兩個偏導(dǎo)數(shù)存在,且可用下列公式計算 xwwzxvvzxuuzxz , ywwzyvvzyuuzyz .zwvuyx特殊地特殊地),(yxufz ),(yxu 即即,),(yxyxfz ,xfxuufxz .yfyuufyz 令令,xv , yw 其中其中, 1 xv, 0 xw, 0 yv. 1 yw把把復(fù)復(fù)合合函函數(shù)數(shù),),(yxyxfz 中中的的y看看作作不不變變而而對對x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù)把把),(yxufz 中中的的u及及y看看作作不不變變而而對對x的的偏偏導(dǎo)導(dǎo)數(shù)數(shù)兩者的區(qū)別兩者的區(qū)別區(qū)別類似區(qū)別類似例例 1 1 設(shè)設(shè)vezusin ,而,而xyu
5、 ,yxv , 求求 xz 和和yz .解解 xz uzxu vzxv 1cossin veyveuu),cossin(vvyeu yz uzyu vzyv 1cossin vexveuu).cossin(vvxeu 例例 2 2 設(shè)設(shè)tuvzsin ,而而teu ,tvcos , 求求全全導(dǎo)導(dǎo)數(shù)數(shù)dtdz.解解tzdtdvvzdtduuzdtdz ttuvetcossin ttetettcossincos .cos)sin(costttet 例例 3 3 設(shè)設(shè)),(xyzzyxfw ,f具有二階具有二階 連續(xù)偏導(dǎo)數(shù),求連續(xù)偏導(dǎo)數(shù),求xw 和和zxw 2. .解解令令, zyxu ;xyzv
6、記記,),(1uvuff ,),(212vuvuff 同理有同理有,2f ,11f .22f xwxvvfxuuf ;21fyzf zxw2)(21fyzfz ;221zfyzf yzf zf1zvvfzuuf 11;1211fxyf zf2zvvfzuuf 22;2221fxyf 于是于是 zxw21211fxyf 2f y )(2221fxyfyz .)(22221211f yf zxyfzxyf 設(shè)函數(shù)設(shè)函數(shù)),(vufz 具有連續(xù)偏導(dǎo)數(shù),則有全微分具有連續(xù)偏導(dǎo)數(shù),則有全微分dvvzduuzdz ;當(dāng)當(dāng)),(yxu 、),(yxv 時,有時,有dyyzdxxzdz .全微分形式不變形的實
7、質(zhì)全微分形式不變形的實質(zhì): 無論無論 是自變量是自變量 的函數(shù)或中間變量的函數(shù)或中間變量 的函數(shù),它的全微分形式是一樣的的函數(shù),它的全微分形式是一樣的.zvu、vu、二、全微分形式不變性二、全微分形式不變性dxxvvzxuuz dyyzdxxzdz dyyvvzyuuz dyyudxxuuz dyyvdxxvvzduuz .dvvz 例例 4 4 已知已知02 zxyeze,求,求xz 和和yz .解解, 0)2( zxyezed, 02)( dzedzxydezxy)()2(ydxxdyedzexyz dyexedxeyedzzxyzxy)2()2( xz ,2 zxyeyeyz .2 zx
8、yexe1、鏈?zhǔn)椒▌t、鏈?zhǔn)椒▌t(分三種情況)(分三種情況)2、全微分形式不變性、全微分形式不變性(特別要注意課中所講的特殊情況)(特別要注意課中所講的特殊情況)(理解其實質(zhì))(理解其實質(zhì))三、小結(jié)三、小結(jié)設(shè)設(shè)),(xvufz ,而而)(xu ,)(xv ,則則xfdxdvvfdxduufdxdz ,試試問問dxdz與與xf 是是否否相相同同?為為什什么么?思考題思考題思考題解答思考題解答不相同不相同.等式左端的等式左端的z是作為一個自變量是作為一個自變量x的函數(shù),的函數(shù),而而等等式式右右端端最最后后一一項項f是是作作為為xvu,的的三三元元函函數(shù)數(shù), 寫出來為寫出來為 xxvuxdxduufd
9、xdz),(.),(),(xvuxxvuxfdxdvvf 一、填空題一、填空題: : 1 1、設(shè)、設(shè)xyyxzcoscos , ,則則 xz_; yz_. .2 2、 設(shè)設(shè)22)23ln(yyxxz , ,則則 xz_; yz_._. 3 3、設(shè)、設(shè)32sinttez , ,則則 dtdz_._.二二、設(shè)設(shè)uvuez , ,而而xyvyxu ,22,求求yzxz , . .練練 習(xí)習(xí) 題題三、設(shè)三、設(shè))arctan(xyz , ,而而xey , ,求求dxdz. .四、設(shè)四、設(shè)),(22xyeyxfz ( (其其具具中中f有一階連續(xù)偏導(dǎo)有一階連續(xù)偏導(dǎo) 數(shù)數(shù)) ), ,求求yzxz ,. .五、
10、設(shè)五、設(shè))(xyzxyxfu ,(,(其其具具中中f有一階連續(xù)偏導(dǎo)有一階連續(xù)偏導(dǎo) 數(shù)數(shù)),),求求.,zuyuxu 六、設(shè)六、設(shè)),(yxxfz ,(,(其其具具中中f有二階連續(xù)偏導(dǎo)數(shù)有二階連續(xù)偏導(dǎo)數(shù)),),求求 22222,yzyxzxz . .七、設(shè)七、設(shè),)(22yxfyz 其中為可導(dǎo)函數(shù)其中為可導(dǎo)函數(shù), , 驗證驗證: :211yzyzyxzx . .八、設(shè)八、設(shè) ,),(其中其中yyxxz 具有二階導(dǎo)數(shù)具有二階導(dǎo)數(shù), ,求求 .,2222yzxz 一、一、1 1、xyyyyxxxyxxxy222cos)cossin(cos,cos)sin(coscos ; 2 2、,)23(3)23ln(2222yyxxyxyx 2232)23(2)23ln(2yyxxyxyx ; 3 3、.)43(1)41(3232ttt 二、二、,)(22222222yxxyeyyxyxyxxz )(22222)(22yxxyeyxxyxyyz . .練習(xí)題答案練習(xí)題答案三、三、xxexxedxdz221)1( . .
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025產(chǎn)品銷售咨詢服務(wù)合同(中介撮合客戶)
- 2025合同模板車位租賃合同范本
- 10吃飯有講究 說課稿-2024-2025學(xué)年道德與法治一年級上冊統(tǒng)編版001
- 個人汽車信貸合同范例
- 勞務(wù)轉(zhuǎn)包簡易合同范本
- 創(chuàng)業(yè)企業(yè)融資合同范例
- 2024年五年級英語上冊 Unit 1 What's he like第四課時說課稿 人教PEP
- 共享攤位出租合同范本
- 辦公室綠植養(yǎng)護合同范本
- 2023三年級英語下冊 Module 1 Using my five senses Unit 2 Tastes第1課時說課稿 牛津滬教版(三起)
- 浙江省杭州市2024年中考語文試卷(含答案)
- 世說新語原文及翻譯-副本
- 電力通信光纜檢修標(biāo)準(zhǔn)化作業(yè)指導(dǎo)書
- 安全隱患舉報獎勵制度
- 工貿(mào)行業(yè)企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)實施指南
- T-CACM 1560.6-2023 中醫(yī)養(yǎng)生保健服務(wù)(非醫(yī)療)技術(shù)操作規(guī)范穴位貼敷
- 2024年全國統(tǒng)一考試高考新課標(biāo)Ⅱ卷數(shù)學(xué)試題(真題+答案)
- 人教版小學(xué)數(shù)學(xué)一年級下冊第1-4單元教材分析
- JTS-215-2018碼頭結(jié)構(gòu)施工規(guī)范
- 2024年長沙衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫含答案
- 2024山西省文化旅游投資控股集團有限公司招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論