電容退耦原理_第1頁
電容退耦原理_第2頁
電容退耦原理_第3頁
電容退耦原理_第4頁
電容退耦原理_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、電 容 退 耦 原 理采用電容退耦是解決電源噪聲問題的主要方法。這種方法對提高瞬態(tài)電流的響應(yīng)速度,降 低電源分配系統(tǒng)的阻抗都非常有效。對于電容退耦,很多資料中都有涉及,但是闡述的角度不同。有些是從局部電荷存儲(即 儲能)的角度來說明,有些是從電源分配系統(tǒng)的阻抗的角度來說明,還有些資料的說明更 為混亂,一會提儲能,一會提阻抗,因此很多人在看資料的時候感到有些迷惑。其實,這 兩種提法,本質(zhì)上是相同的,只不過看待問題的視角不同而已。為了讓大家有個清楚的認(rèn) 識,本文分別介紹一下這兩種解釋。從儲能的角度來說明電容退耦原理。在制作電路板時,通常會在負(fù)載芯片周圍放置很多電容,這些電容就起到電源退耦作用。 其

2、原理可用圖 1 說明。圖 1 去耦電路當(dāng)負(fù)載電流不變時,其電流由穩(wěn)壓電源部分提供,即圖中的 I0,方向如圖所示。此時電容 兩端電壓與負(fù)載兩端電壓一致,電流 Ic 為 0,電容兩端存儲相當(dāng)數(shù)量的電荷,其電荷數(shù)量 和電容量有關(guān)。當(dāng)負(fù)載瞬態(tài)電流發(fā)生變化時,由于負(fù)載芯片內(nèi)部晶體管電平轉(zhuǎn)換速度極 快,必須在極短的時間內(nèi)為負(fù)載芯片提供足夠的電流。但是穩(wěn)壓電源無法很快響應(yīng)負(fù)載電 流的變化,因此,電流 I0 不會馬上滿足負(fù)載瞬態(tài)電流要求,因此負(fù)載芯片電壓會降低。但 是由于電容電壓與負(fù)載電壓相同,因此電容兩端存在電壓變化。對于電容來說電壓變化必 然產(chǎn)生電流,此時電容對負(fù)載放電,電流 Ic 不再為 0,為負(fù)載芯片

3、提供電流。根據(jù)電容等 式:I=C 只要電容量 C 足夠大,只需很小的電壓變化,電容就可以提供足夠大的電流,滿足負(fù)載瞬 態(tài)電流的要求。這樣就保證了負(fù)載芯片電壓的變化在容許的范圍內(nèi)。這里,相當(dāng)于電容預(yù) 先存儲了一部分電能,在負(fù)載需要的時候釋放出來,即電容是儲能元件。儲能電容的存在使負(fù)載消耗的能量得到快速補充,因此保證了負(fù)載兩端電壓不至于有太大變化,此時電容 擔(dān)負(fù)的是局部電源的角色。從儲能的角度來理解電源退耦,非常直觀易懂,但是對電路設(shè)計幫助不大。從阻抗的角度 理解電容退耦,能讓我們設(shè)計電路時有章可循。實際上,在決定電源分配系統(tǒng)的去耦電容 量的時候,用的就是阻抗的概念。從阻抗的角度來理解退耦原理。將

4、圖 1 中的負(fù)載芯片拿掉,如圖 2 所示。從 AB 兩點向左看過去,穩(wěn)壓電源以及電容退耦 系統(tǒng)一起,可以看成一個復(fù)合的電源系統(tǒng)。這個電源系統(tǒng)的特點是:不論 AB 兩點間負(fù)載 瞬態(tài)電流如何變化,都能保證 AB 兩點間的電壓保持穩(wěn)定,即 AB 兩點間電壓變化很小。 圖片 2 我們可以用一個等效電源模型表示上面這個復(fù)合的電源系統(tǒng),如圖 3圖 3 等效電源對于這個電路可寫出如下等式:V=Z.I (公式 2)我們的最終設(shè)計目標(biāo)是,不論 AB 兩點間負(fù)載瞬態(tài)電流如何變化,都要保持 AB 兩點間電壓 變化范圍很小,根據(jù)公式 2,這個要求等效于電源系統(tǒng)的阻抗 Z 要足夠低。在圖 2 中,我 們是通過去耦電容來

5、達到這一要求的,因此從等效的角度出發(fā),可以說去耦電容降低了電系統(tǒng)的阻抗。另一方面,從電路原理的角度來說,可得到同樣結(jié)論。電容對于交流信號 呈現(xiàn)低阻抗特性,因此加入電容,實際上也確實降低了電源系統(tǒng)的交流阻抗。從阻抗的角度理解電容退耦,可以給我們設(shè)計電源分配系統(tǒng)帶來極大的方便。實際上,電 源分配系統(tǒng)設(shè)計的最根本的原則就是使阻抗最小。最有效的設(shè)計方法就是在這個原則指導(dǎo) 下產(chǎn)生的。正確使用電容進行電源退耦,必須了解實際電容的頻率特性。理想電容器在實際中是不存 在的,這就是為什么經(jīng)常聽到“電容不僅僅是電容”的原因。實際的電容器總會存在一些寄生參數(shù),這些寄生參數(shù)在低頻時表現(xiàn)不明顯,但是高頻情況 下,其重要

6、性可能會超過容值本身。圖 4 是實際電容器的 SPICE 模型,圖中,ESR 代表等 效串聯(lián)電阻,ESL 代表等效串聯(lián)電感或寄生電感,C 為理想電容。等效串聯(lián)電感(寄生電感)無法消除,只要存在引線,就會有寄生電感。這從磁場能量變 化的角度可以很容易理解,電流發(fā)生變化時,磁場能量發(fā)生變化,但是不可能發(fā)生能量躍 變,表現(xiàn)出電感特性。寄生電感會延緩電容電流的變化,電感越大,電容充放電阻抗就越 大,反應(yīng)時間就越長。等效串聯(lián)電阻也不可消除的,很簡單,因為制作電容的材料不是超 導(dǎo)體。討論實際電容特性之前,首先介紹諧振的概念。對于圖 4 的電容模型,其復(fù)阻抗為:Z=ESR+j2f ESL+=ESR+j(2f

7、 ESL)當(dāng)頻率很低時, 2f ESL遠小于 ,整個電容器表現(xiàn)為電容性,當(dāng)頻率很高時,2f ESL大于 ,電容器此時表現(xiàn)為電感性,因此“高頻時電容不再是電容”,而呈現(xiàn)為電感。當(dāng)f0= 2f ESL=時,此時容性阻抗矢量與感性阻抗之差為 0,電容的總阻抗最小,表現(xiàn)為純電阻特性。該頻率點就是電容的自諧振頻率。自諧振頻率點是區(qū) 分電容是容性還是感性的分界點,高于諧振頻率時,“電容不再是電容”,因此退耦作用將 下降。因此,實際電容器都有一定的工作頻率范圍,只有在其工作頻率范圍內(nèi),電容才具 有很好的退耦作用,使用電容進行電源退耦時要特別關(guān)注這一點。寄生電感(等效串聯(lián)電 感)是電容器在高于自諧振頻率點之后

8、退耦功能被消弱的根本原因。圖 5 顯示了一個實際 的 0805 封裝 0.1uF 陶瓷電容,其阻抗隨頻率變化的曲線。圖 5 電容阻抗特性電容的自諧振頻率值和它的電容值及等效串聯(lián)電感值有關(guān),使用時可查看器件手冊,了解 該項參數(shù),確定電容的有效頻率范圍。下面列出了 AVX 生產(chǎn)的陶瓷電容不同封裝的各項參 數(shù)值。封裝ESL(nH)ESR(歐姆)04020.40.0606030.50.09808050.60.0791206)10.1212100.90.1218121.40.20322201.60.285電容的等效串聯(lián)電感和生產(chǎn)工藝和封裝尺寸有關(guān),同一個廠家的同種封裝尺寸的電容,其 等效串聯(lián)電感基本相同

9、。通常小封裝的電容等效串聯(lián)電感更低,寬體封裝的電容比窄體封 裝的電容有更低的等效串聯(lián)電感。既然電容可以看成 RLC 串聯(lián)電路,因此也會存在品質(zhì)因數(shù),即 Q 值,這也是在使用電容時 的一個重要參數(shù)。電路在諧振時容抗等于感抗,所以電容和電感上兩端的電壓有效值必然相等,電容上的電 壓有效值 UC=I*1/C=U/CR=QU,品質(zhì)因數(shù) Q=1/CR,這里 I 是電路的總電流。電感上的 電壓有效值 UL=LI=L*U/R=QU,品質(zhì)因數(shù) Q=L/R。因為:UC=UL 所以 Q=1/CR=L/R。 電容上的電壓與外加信號電壓 U 之比 UC/U=(I*1/C)/RI=1/CR=Q。電感上的電壓與外 加信號

10、電壓 U 之比 UL/U=LI/RI=L/R=Q。從上面分析可見,電路的品質(zhì)因數(shù)越高,電感或 電容上的電壓比外加電壓越高。Q 值影響電路的頻率選擇性。當(dāng)電路處于諧振頻率時,有最大的電流,偏離諧振頻率時總 電流減小。我們用 I/I0 表示通過電容的電流與諧振電流的比值,即相對變化率。 表示頻率 偏離諧振頻率程度。圖 6 顯示了 I/I0 與/0 關(guān)系曲線。這里有三條曲線,對應(yīng)三個不同 的 Q 值,其中有 Q1>Q2>Q3。從圖中可看出當(dāng)外加信號頻率 偏離電路的諧振頻率 0 時,I/I0 均小于 1。Q 值越高在一定的頻偏下電流下降得越快,其諧振曲線越尖銳。也就 是說電路的選擇性是由電

11、路的品質(zhì)因素 Q 所決定的,Q 值越高選擇性越好。在電路板上會放置一些大的電容,通常是坦電容或電解電容。這類電容有很低的 ESL,但 是 ESR 很高,因此 Q 值很低,具有很寬的有效頻率范圍,非常適合板級電源濾波。當(dāng)電容安裝到電路板上后,還會引入額外的寄生參數(shù),從而引起諧振頻率的偏移。充分理 解電容的自諧振頻率和安裝諧振頻率非常重要,在計算系統(tǒng)參數(shù)時,實際使用的是安裝諧 振頻率,而不是自諧振頻率,因為我們關(guān)注的是電容安裝到電路板上之后的表現(xiàn)。電容在電路板上的安裝通常包括一小段從焊盤拉出的引出線,兩個或更多的過孔。我們知 道,不論引線還是過孔都存在寄生電感。寄生電感是我們主要關(guān)注的重要參數(shù),因

12、為它對 電容的特性影響最大。電容安裝后,可以對其周圍一小片區(qū)域有效去耦,這涉及到去耦半 徑問題,本文后面還要詳細講述。現(xiàn)在我們考察這樣一種情況,電容要對距離它 2 厘米處 的一點去耦,這時寄生電感包括哪幾部分。首先,電容自身存在寄生電感。從電容到達需 要去耦區(qū)域的路徑上包括焊盤、一小段引出線、過孔、2 厘米長的電源及地平面,這幾個 部分都存在寄生電感。相比較而言,過孔的寄生電感較大。可以用公式近似計算一個過孔 的寄生電感有多大。 公式為L=5.08h【In()+1】其中:L 是過孔的寄生電感,單位是 nH。h 為過孔的長度,和板厚有關(guān),單位是英寸。d 為過孔的直徑,單位是英寸。下面就計算一個常

13、見的過孔的寄生電感,看看有多大,以便 有一個感性認(rèn)識。設(shè)過孔的長度為 63mil(對應(yīng)電路板的厚度 1.6 毫米,這一厚度的電路 板很常見),過孔直徑 8mil,根據(jù)上面公式得:L=5.08*0.063【In()+1】=1.4242nH這一寄生電感比很多小封裝電容自身的寄生電感要大,必須考慮它的影響。過孔的直徑越 大,寄生電感越小。過孔長度越長,電感越大。下面我們就以一個 0805 封裝 0.01uF 電容 為例,計算安裝前后諧振頻率的變化。參數(shù)如下:容值:C=0.01uF。電容自身等效串聯(lián)電 感:ESL=0.6 nH。安裝后增加的寄生電感:Lmount=1.5nH。電容的自諧振頻率:f0=

14、=64.975MHz安裝后的總寄生電感:0.6+1.5=2.1nH。注意,實際上安裝一個電容至少要兩個過孔,寄生 電感是串聯(lián)的,如果只用兩個過孔,則過孔引入的寄生電感就有 3nH。但是在電容的每一 端都并聯(lián)幾個過孔,可以有效減小總的寄生電感量,這和安裝方法有關(guān)。安裝后的諧振頻率為:f0=34.73MHz可見,安裝后電容的諧振頻率發(fā)生了很大的偏移,使得小電容的高頻去耦特性被消弱。在 進行電路參數(shù)設(shè)計時,應(yīng)以這個安裝后的諧振頻率計算,因為這才是電容在電路板上的實 際表現(xiàn)。安裝電感對電容的去耦特性產(chǎn)生很大影響,應(yīng)盡量減小。實際上,如何最大程度的減小安 裝后的寄生電感,是一個非常重要的問題從電源系統(tǒng)的

15、角度進行去耦設(shè)計先插一句題外話,很多人在看資料時會有這樣的困惑,有的資料上說要對每個電源引腳加 去耦電容,而另一些資料并不是按照每個電源引腳都加去偶電容來設(shè)計的,只是說在芯片 周圍放置多少電容,然后怎么放置,怎么打孔等等。那么到底哪種說法及做法正確呢?我 在剛接觸電路設(shè)計的時候也有這樣的困惑。其實,兩種方法都是正確的,只不過處理問題 的角度不同??催^本文后,你就徹底明白了。上一節(jié)講了對引腳去耦的方法,這一節(jié)就來講講另一種方法,從電源系統(tǒng)的角度進行去耦 設(shè)計。該方法本著這樣一個原則:在感興趣的頻率范圍內(nèi),使整個電源分配系統(tǒng)阻抗最 低。其方法仍然是使用去耦電容。電源去耦涉及到很多問題:總的電容量多

16、大才能滿足要求?如何確定這個值?選擇那些電 容值?放多少個電容?選什么材質(zhì)的電容?電容如何安裝到電路板上?電容放置距離有什 么要求?下面分別介紹。著名的 Target Impedance(目標(biāo)阻抗)目標(biāo)阻抗(Target Impedance)定義為:Xmax=其中: VDD為要進行去耦的電源電壓等級,常見的有 5V、3.3V、1.8V、1.26V、1.2V 等。Ripple為允許的電壓波動,在電源噪聲余量一節(jié)中我們已經(jīng)闡述過了,典型值為 2.5%。 為負(fù)載芯片的最大瞬態(tài)電流變化量。該定義可解釋為:能滿足負(fù)載最大瞬態(tài)電流供應(yīng),且電壓變化不超過最大容許波動范圍的 情況下,電源系統(tǒng)自身阻抗的最大值。

17、超過這一阻抗值,電源波動將超過容許范圍。如果 你對阻抗和電壓波動的關(guān)系不清楚的話,請回顧“電容退耦的兩種解釋”一節(jié)。對目標(biāo)阻抗有兩點需要說明:1 目標(biāo)阻抗是電源系統(tǒng)的瞬態(tài)阻抗,是對快速變化的電流表現(xiàn)出來的一種阻抗特性。2 目標(biāo)阻抗和一定寬度的頻段有關(guān)。在感興趣的整個頻率范圍內(nèi),電源阻抗都不能超過這 個值。阻抗是電阻、電感和電容共同作用的結(jié)果,因此必然與頻率有關(guān)。感興趣的整個頻 率范圍有多大?這和負(fù)載對瞬態(tài)電流的要求有關(guān)。顧名思義,瞬態(tài)電流是指在極短時間內(nèi) 電源必須提供的電流。如果把這個電流看做信號的話,相當(dāng)于一個階躍信號,具有很寬的 頻譜,這一頻譜范圍就是我們感興趣的頻率范圍。如果暫時不理解上

18、述兩點,沒關(guān)系,繼續(xù)看完本文后面的部分,你就明白了。需要多大的電容量有兩種方法確定所需的電容量。第一種方法利用電源驅(qū)動的負(fù)載計算電容量。這種方法沒有考慮 ESL 及 ESR 的影響,因此很不精確,但是對理解電容量的選擇有好處。第二種方法 就是利用目標(biāo)阻抗(Target Impedance)來計算總電容量,這是業(yè)界通用的方法,得到了 廣泛驗證。你可以先用這種方法來計算,然后做局部微調(diào),能達到很好的效果,如何進行 局部微調(diào),是一個更高級的話題。下面分別介紹兩種方法。方法一:利用電源驅(qū)動的負(fù)載計算電容量設(shè)負(fù)載(容性)為 30pF,要在 2ns 內(nèi)從 0V 驅(qū)動到 3.3V,瞬態(tài)電流為:I=C*=30

19、pF*=49.5mA 如果共有 36 個這樣的負(fù)載需要驅(qū)動,則瞬態(tài)電流為:36*49.5mA=1.782A。假設(shè)容許電壓 波動為:3.3*2.5%=82.5 mV,所需電容量為C=I*dt/dv=1.782A*2ns/0.0825V=43.2nF說明:所加的電容實際上作為抑制電壓波紋的儲能元件,該電容必須在 2ns 內(nèi)為負(fù)載提供1.782A 的電流,同時電壓下降不能超過 82.5 mV,因此電容值應(yīng)根據(jù) 82.5 mV 來計算。記 ?。弘娙莘烹娊o負(fù)載提供電流,其本身電壓也會下降,但是電壓下降的量不能超過 82.5 mV(容許的電壓波紋)。這種計算沒什么實際意義,之所以放在這里說一下,是為了讓

20、大家對去耦原理認(rèn)識更深。方法二:利用目標(biāo)阻抗計算電容量(設(shè)計思想很嚴(yán)謹(jǐn),要吃透)為了清楚的說明電容量的計算方法,我們用一個例子。要去耦的電源為 1.2V,容許電壓波 動為 2.5%,最大瞬態(tài)電流 600mA,第一步:計算目標(biāo)阻抗Xmax=50m第二步:確定穩(wěn)壓電源頻率響應(yīng)范圍。和具體使用的電源片子有關(guān),通常在 DC 到幾百 kHz 之間。這里設(shè)為 DC 到 100kHz。在 100kHz 以下時,電源芯片能很好的對瞬態(tài)電流做出反應(yīng),高于 100kHz 時,表現(xiàn)為很高的 阻抗,如果沒有外加電容,電源波動將超過允許的 2.5%。為了在高于 100kHz 時仍滿足電 壓波動小于 2.5%要求,應(yīng)該加

21、多大的電容?第三步:計算 bulk 電容量當(dāng)頻率處于電容自諧振點以下時,電容的阻抗可近似表示為:Zc =頻率 f 越高,阻抗越小,頻率越低,阻抗越大。在感興趣的頻率范圍內(nèi),電容的最大阻抗 不能超過目標(biāo)阻抗,因此使用 100kHz 計算(電容起作用的頻率范圍的最低頻率,對應(yīng)電 容最高阻抗)。C=31.831uF第四步:計算 bulk 電容的最高有效頻率當(dāng)頻率處于電容自諧振點以上時,電容的阻抗可近似表示為:Zc=2f*ESL頻率 f 越高,阻抗越大,但阻抗不能超過目標(biāo)阻抗。假設(shè) ESL 為 5nH,則最高有效頻率 為: fmax =1.6Mhz 這樣一個大的電容能夠讓我們把電源阻抗在 100kHz

22、 到1.6MHz 之間控制在目標(biāo)阻抗之下。當(dāng)頻率高于 1.6MHz 時,還需要額外的電容來控制電源 系統(tǒng)阻抗。第五步:計算頻率高于 1.6MHz 時所需電容如果希望電源系統(tǒng)在 500MHz 以下時都能滿足電壓波動要求,就必須控制電容的寄生電感 量。必須滿足2f*Lmax Xmax,所以有:Lmax=0.016nH假設(shè)使用 AVX 公司的 0402 封裝陶瓷電容,寄生電感約為 0.4nH,加上安裝到電路板上后 過孔的寄生電感(本文后面有計算方法)假設(shè)為 0.6nH,則總的寄生電感為 1 nH。為了滿足總電感不大于 0.16 nH 的要求,我們需要并聯(lián)的電容個數(shù)為:1/0.016=62.5 個,因

23、此需 要 63 個 0402 電容。為了在 1.6MHz 時阻抗小于目標(biāo)阻抗,需要電容量為:C=1.984uF因此每個電容的電容量為 1.9894/63=0.0316 uF。綜上所述,對于這個系統(tǒng),我們選擇 1 個 31.831 uF 的大電容和 63 個 0.0316 uF 的小電容 即可滿足要求。相同容值電容的并聯(lián)使用很多電容并聯(lián)能有效地減小阻抗。63 個 0.0316 uF 的小電容(每個電容 ESL 為 1 nH) 并聯(lián)的效果相當(dāng)于一個具有 0.159 nH ESL 的 1.9908 uF 電容。圖 10 多個等值電容并聯(lián)單個電容及并聯(lián)電容的阻抗特性如圖 10 所示。并聯(lián)后仍有相同的諧振頻率,但是并聯(lián)電 容在每一個頻率點上的阻抗都小于單個電容。但是,從圖中我們看到,阻抗曲線呈 V 字型,隨著頻率偏離諧振點,其阻抗仍然上升的很 快。要在很寬的頻率范圍內(nèi)滿足目標(biāo)阻抗要求,需要并聯(lián)大量的同值電容。這不是一種好 的方法,造成極大地浪費。有些人喜歡在電路板上放置很多 0.1uF 電容,如果你設(shè)計的電 路工作頻率很高,信號變化很快,那就不要這樣做,最好使用不同容值的組合來構(gòu)成相對 平坦的阻抗曲線。不同容值電容的并聯(lián)與反諧振(Anti-Resonance)容值不同的電容具有不同的諧振點。圖 11 畫出了兩個電容阻抗隨頻率變化的曲線。圖 11 兩個不同

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論