版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、最新人教版數(shù)學精品教學資料綜合檢測一、選擇題1在 abc 中,角 a,b,c 所對的邊分別為a,b,c.若 c4,a4 2,a45 ,則 sin c等于 () a.12b.22c.14d.24答案a 解析由正弦定理得sin ccsin aa 4224212. 2函數(shù) yln x1x23x4的定義域為 () a( 4, 1) b(4,1) c(1,1) d(1,1 答案c 解析由題x1 0,x23x40? 1x1. 3已知等差數(shù)列an的前 n 項和為 sn,若 s11,s4s24,則s6s4的值為 () a.32b.54c.94d4 答案c 解析設公差為d,則 s44a16d, s22a1d,結
2、合 s44s2得 d2,s416, s636,s6s494. 4已知在 abc 中, sin a sin bsin c 324,那么 cos c 的值為 () a14b.14c23d.23答案a 解析由題意知, sin asin bsin cabc3 24,設 a3k,b2k,c4k,cos ca2b2c22ab3k2 2k2 4k22 3k 2k14. 5已知等差數(shù)列an的前 n 項和為 18,若 s31,anan1 an23,則 n 等于 () a9 b21 c27 d36 答案c 解析s3 anan1an24 3(a1an),a1an43,又 snn a1 an2n43218,n27.
3、6已知點 p(x,y)滿足條件y0,yx,2x y90,則 zx3y 的最小值為 () a9 b 6 c 9 d6 答案b 解析作出可行域如圖所示的陰影部分由目標函數(shù)zx3y 得: y13xz3,z3為直線在y 軸上的截距平移直線l0:y13x,當直線經(jīng)過點a 時, z 取得最小值xy0,2xy 90,x3,y3,a(3,3)zmin333 6. 7.如圖,一輪船從a 點沿北偏東70 的方向行駛10 海里至海島b,又從 b 沿北偏東10 的方向行駛 10 海里至海島c,若此輪船從a 點直接沿直線行駛至海島c,則此船沿 _方向行駛 _海里至海島c() a北偏東60 ;102 b北偏東40 ;10
4、3 c北偏東30 ;103 d北偏東20 ;102 答案b 解析由已知得在 abc 中, abc180 70 10 120 ,ab bc10,故 bac30 ,所以從 a 到 c 的航向為北偏東70 30 40 ,由余弦定理得ac2ab2bc22ab bccos abc102 10221010 12300,所以 ac103. 8當 x0 時,不等式x2mx90 恒成立,則實數(shù)m 的取值范圍是 () a(, 6) b(, 6 c6, ) d(6, ) 答案a 解析由題意得:當x0 時, mxx29,即 mx9x恒成立設函數(shù)f(x)x9x(x0),則有 x9x2 x9x6,當且僅當x9x,即 x3
5、 時,等號成立則實數(shù)m 的取值范圍是m6. 9設 x,y 滿足約束條件2xy2 0,8xy4 0,x 0,y0,若目標函數(shù)zabxy(a,b0)的最大值為8,則ab 的最小值為 () a2 b4 c6 d8 答案b 解析原不等式組表示的平面區(qū)域如圖中陰影部分所示,當直線zabxy(a0,b0)過直線 2xy20 與直線 8xy40 的交點 (1,4)時,目標函數(shù)z abxy(a0,b 0)取得最大值 8,即 8ab 4,即 ab4,所以 ab2 ab4,當且僅當ab2 時,等號成立 所以 ab 的最小值為4. 10在各項均為正數(shù)的等比數(shù)列 an中,公比q(0,1)若 a3 a55,a2 a64
6、,bn log2an,數(shù)列 bn的前 n 項和為 sn,則當s11s22snn取最大值時,n 的值為 () a8 b9 c8 或 9 d17 答案c 解析 a2 a6a3 a5 4,且 a3a55,a3,a5是方程 x25x40 的兩個根又等比數(shù)列 an 各項均為正數(shù)且q(0,1),a34,a51. q2a5a314,q12. an412n3, bn log2an 5n. sn9n n2,snn9n2. tns11s22snn14(n217n) 14 n17222894. 當 n8 或 9時, tn取得最大值二、填空題11在 abc 中, a,b,c 分別是角 a,b,c 的對邊,已知a,b,
7、c 成等比數(shù)列,且a2c2acbc,則cbsin b的值為 _答案233解析 a,b,c 成等比數(shù)列,b2ac. 又c2a2bcac,b2c2a2bc. 在abc 中,由余弦定理得cos ab2c2a22bcbc2bc12,a60 . 由正弦定理得asin absin b,sin b3b2a. cbsin b2ac3b2233. 12 若關于 x的不等式x2ax a 3 有解,則實數(shù) a 的取值范圍為_答案(, 62, ) 解析由題意知,只需yx2axa 的最小值不大于3 即可即4a a243,解得 a6 或 a 2. 13已知數(shù)列 an 滿足: a11,an1an1,則使 an25 成立的
8、n 的最大值為 _答案4 解析易知 an為等差數(shù)列,首項為a11,公差為1,an1(n1)n,ann2,令 n2 25,n5, n4. 14已知 abc 的一個內角為120 ,且三邊長構成公差為4 的等差數(shù)列, 則 abc 的面積為_答案153 解析不妨設 a120 ,cb,則 a 為最長邊,故ab 4,cb4,由余弦定理,得a2b2c22bccos a,即(b4)2 b2(b4)22b(b 4)cos 120 ,化簡得 b210b0,b10 或 b 0(舍去 ),c6,sabc12bcsin a153. 15已知數(shù)列 an滿足: a11,an1anan2,若 bn1 (n )(1an1)(n
9、n*),b1 ,且數(shù)列bn為單調遞增數(shù)列,則實數(shù) 的取值范圍為 _答案(, 2) 解析由題意得,1an1an2an12an,1an1121an1 ,又1a1120,1an1 是以 2 為首項, 2 為公比的等比數(shù)列,1an12n,bn1(n ) 2n(n1),又 b1 ,bn(n1 ) 2n1(n1),又bn單調遞增,bn1bn,則有 (n ) 2n(n1 ) 2n1, n 1 對任意 nn*恒成立, 2. 三、解答題16在 abc 中,內角a,b,c 的對邊分別為a, b,c,且滿足 (2ac)cos b bcos c. (1)求內角 b 的大?。?2)設 m(sin a,cos 2a),n
10、(4k,1)(k1),m n 的最大值為5,求 k 的值解(1)由正弦定理及 (2ac)cos bbcos c,得(2sin a sin c)cos bsin bcos c,整理得 2sin acos bsin bcos csin ccos bsin(bc)sin a,因為 a(0, ),所以 sin a0,故 cos b12,所以 b3. (2)m n4ksin acos 2a 2sin2a4ksin a1,其中 a 0,23,設 sin at,t(0,1 ,則m n 2t2 4kt1 2(tk)21 2k2. 又 k1,故當 t1 時, m n 取得最大值由題意得 2 4k15,解得 k3
11、2. 17已知數(shù)列 an 的前 n 項和為 sn2n24. (1)求數(shù)列 an 的通項公式;(2)設 bnan log2an,求數(shù)列 bn的前 n 項和 tn. 解(1)因為 sn2n24,所以 a1s14,n2 時, ansnsn12n24(2n14) 2n1,顯然 a1也符合該表達式所以an2n1. (2)因為 bnan log2an(n1) 2n1,所以 tn2 223 234 24n 2n(n1) 2n1,2tn2 233 244 25n 2n1(n1) 2n2,得,tn 2 2223242n1(n1) 2n2 232312n112(n1)2n2 2323(2n11)(n1)2n2(n
12、1) 2n223 2n1n 2n2. 18甲乙兩地生產(chǎn)某種產(chǎn)品,他們可以調出的數(shù)量分別為300 噸, 750 噸 a、 b、c 三地需要該產(chǎn)品數(shù)量分別為200 噸、 450 噸、 400 噸,甲地運往a、b、c 三地的費用分別為6 元 /噸、 3 元/噸、 5 元/噸,乙地運往a、b、c 三地的費用分別為5 元/噸、 9 元 /噸、 6 元/噸,問怎樣調運,才能使總運費最小?解設從甲到a 調運 x 噸,從甲到b 調運 y 噸,從甲到c 調運 (300 xy)噸,則從乙到a調運 (200 x)噸,從乙到b 調運 (450y)噸,從乙到c 調運 (100 xy)噸,設調運的總費用為z 元,則 z6
13、x3y5(300 xy)5(200 x)9(450 y) 6(100 xy)2x5y 7 150. 由已知得約束條件為x0,y0,300 xy0,200 x0,450y0,100 xy0,整理得0 x 200,0y 450,xy300,畫可行域并平移直線2x5y0 可得最優(yōu)解為x0, y300. 即從甲到b 調運 300 噸,從乙到a 調運 200 噸,從乙到b 調運 150 噸,從乙到c 調運 400噸,總運費最小19某廠家擬舉行促銷活動,經(jīng)調查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x 萬件與年促銷費用 m 萬元 (m 0)滿足 x3km 1(k 為常數(shù) ),如果不搞促銷活動,則該產(chǎn)品的年
14、銷售量只能是 1 萬件 已知年生產(chǎn)該產(chǎn)品的固定投入為8 萬元, 每生產(chǎn) 1 萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的1.5 倍(產(chǎn)品成本包括固定投入和再投入兩部分資金)(1)將該產(chǎn)品的年利潤y 萬元表示為年促銷費用m 萬元的函數(shù);(2)該廠家年促銷費用投入多少萬元時,廠家的利潤最大?解(1)由題意可知,當m0 時, x1(萬件 ),所以 13k,所以 k2,所以 x32m1,每件產(chǎn)品的銷售價格為1.5816xx(萬元 ),所以年利潤yx1.5816xx(816x m)48xm48 32m1m16m1 m 129(m 0)(2)因為 m0 時,16m1(m1
15、)2168,所以 y82921,當且僅當16m1m1,即 m3(萬元 )時, ymax21(萬元 )所以廠家年促銷費用投入3 萬元時,廠家的利潤最大20在 abc 中, a,b,c 成等差數(shù)列,a,b,c 分別為 a,b,c 的對邊,并且sin a sin ccos2b,sabc4 3,求 a,b,c. 解a,b,c 成等差數(shù)列,ac2b,又 abc180 , b60 ,sin a sin ccos260 14.又 sabc4312acsin b, ac16.由 ,得acsin a sin casin a2csin c264,asin acsin c8. basin bsin a8sin b8
16、sin 60 43,cos ba2c2b22ac12,a2c2b2ac, (ac)2b23ac,(ac)2484896,ac46.聯(lián)立 與 解得, a2(62),c2(62)或 a2(62),c 2( 62)21已知函數(shù)f(x)(x1)2,g(x)4(x 1),數(shù)列 an滿足 a1 2,an1,(an1an)g(an)f(an)0. (1)求證 an134an14;(2)求數(shù)列 an1 的通項公式;(3)若 bn3f(an)g(an1),求 bn中的最大項(1)證明由(an1an)g(an)f(an)0,g(an)4(an1), f(an)(an1)2,得(an1)(4an13an1)0. 又 an 1,an134an14. (2)解an1,a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 抗疫的廣播稿
- 感恩父母主題演講稿集合15篇
- 年會發(fā)言稿合集15篇
- 收銀員崗前培訓
- 志愿者核酸檢測心得體會
- 二零二五年度保姆聘請與雇主權益維護合同2篇
- 預血管化多孔β-磷酸三鈣組織工程骨的構建及其生物學效應評價
- 塔式太陽能定日鏡場糾偏方法研究
- 2025版特殊教育學校樂器采購及輔助教學合同2篇
- 應急預案協(xié)同作戰(zhàn)
- 土法吊裝施工方案
- 商法題庫(含答案)
- BLM戰(zhàn)略規(guī)劃培訓與實戰(zhàn)
- 鋼結構用高強度大六角頭螺栓連接副 編制說明
- 溝通與談判PPT完整全套教學課件
- 移動商務內容運營(吳洪貴)項目四 移動商務運營內容的傳播
- DB43T 2457-2022 烤煙采編烤分收包一體化作業(yè)規(guī)范
- GB/T 15945-1995電能質量電力系統(tǒng)頻率允許偏差
- GB 32311-2015水電解制氫系統(tǒng)能效限定值及能效等級
- 國家重點支持高新技術領域(三級目錄)08
- 理論力學-運動學課件
評論
0/150
提交評論