![雙曲線離心率上課用_第1頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/24/863ecd70-a743-4234-bc2a-29dd76bb390b/863ecd70-a743-4234-bc2a-29dd76bb390b1.gif)
![雙曲線離心率上課用_第2頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/24/863ecd70-a743-4234-bc2a-29dd76bb390b/863ecd70-a743-4234-bc2a-29dd76bb390b2.gif)
![雙曲線離心率上課用_第3頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/24/863ecd70-a743-4234-bc2a-29dd76bb390b/863ecd70-a743-4234-bc2a-29dd76bb390b3.gif)
![雙曲線離心率上課用_第4頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/24/863ecd70-a743-4234-bc2a-29dd76bb390b/863ecd70-a743-4234-bc2a-29dd76bb390b4.gif)
![雙曲線離心率上課用_第5頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/24/863ecd70-a743-4234-bc2a-29dd76bb390b/863ecd70-a743-4234-bc2a-29dd76bb390b5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、例3.已知雙曲線方程為3x2-y2=3, 求: (1)以2為斜率的弦的中點(diǎn)軌跡; (2)過定點(diǎn)B(2,1)的弦的中點(diǎn)軌跡; (3)以定點(diǎn)B(2,1)為中點(diǎn)的弦所在的 直線方程.(4)以定點(diǎn)(1,1)為中點(diǎn)的弦存在嗎?說明理由;1、設(shè)、設(shè)F1,F(xiàn)2分別是雙曲線分別是雙曲線 的左、右焦點(diǎn),雙曲線上存在一點(diǎn)的左、右焦點(diǎn),雙曲線上存在一點(diǎn)P使得使得 ,則雙曲線的離心率為,則雙曲線的離心率為)0, 0( 12222babyax2212-3PFPFbab()172、已知sincos ,雙曲線x2siny2cos1的焦點(diǎn)在y軸上,則雙曲線C的離心率e_.1212122222311tan2PFFPFPFPeb
2、FFxya、已知 是以 、為焦點(diǎn)的雙曲線上一點(diǎn),且,則此雙曲線的離心率 為5321D5、設(shè)ABC為等腰三角形,ABC=120,則以A、B為焦點(diǎn)且過點(diǎn)C的雙曲線的離心率為( ) A. B. C. D.122 132 12 13 BD 31.,4555155. ; .; .;.32233yxABCD 雙曲線的漸近線方程為則雙曲線的離心率為5或或4DCC 22221.1.(1,2); .(2,); . 1,2 ;. 2,xyabABCD例 如果雙曲線右支上總存在到雙曲線的中心與右焦點(diǎn)距離相等的兩個(gè)異點(diǎn),則雙曲線離心率的取值范圍是B2212221,0,xya bFabxA BABFe練習(xí)、過雙曲線左焦
3、點(diǎn) 作垂直于 軸的線交雙曲線于點(diǎn),若為銳角三角形,則求 的取值范圍。 例2已知雙曲線 (a0,b0)的左,右焦點(diǎn)分別為F1、F2,P為雙曲線右支上任一點(diǎn),當(dāng)取得最小值時(shí),該雙曲線的離心率最大值為. 利用雙曲線的定義和基本不等式可求得最值.22221xyab212PFPF3 練習(xí)、點(diǎn)練習(xí)、點(diǎn)P是雙曲線是雙曲線 左支上的一點(diǎn)左支上的一點(diǎn),其右其右焦點(diǎn)為焦點(diǎn)為F(c,0),若若M為線段為線段FP的中點(diǎn)的中點(diǎn),且且M到坐標(biāo)原點(diǎn)的到坐標(biāo)原點(diǎn)的距離為距離為 c,則雙曲線的離心率則雙曲線的離心率e范圍是范圍是( )(A)(1,8.(B)(1,.(C)(,).(D)(2,3.2222-=1xyab(ab0)1
4、8434353B222:1,(1):1xCyal xyae8、設(shè)雙曲線與直線相交于不同兩點(diǎn),求 的取值范圍?)0, 0( 12222babyax21.點(diǎn)點(diǎn)P(2,0)到雙曲線)到雙曲線一條漸近線距離為一條漸近線距離為,求離心率練習(xí):?0,13. 2112222exPFFbabyaxxabyP軸,則垂直于是左焦點(diǎn),左支的交點(diǎn),與雙曲線為直線設(shè)所以雙曲線的方程為x2-=1.(法二)由題意可得F2的坐標(biāo)為(,0),點(diǎn)P的坐標(biāo)為(,4).設(shè)雙曲線方程為-=1(a0,b0),則有,解得.故雙曲線的方程為x2-=1.24y5522xa22yb2222225541abab12ab24y(2)由題意可得=,c2=a2+b2,所以=.(3)設(shè)雙曲線的左焦點(diǎn)為F與坐標(biāo)原點(diǎn)為O,連結(jié)PF,則|OM|=c,又因?yàn)镸是線段FP的中點(diǎn),所以|PF|=2|OM|=2c=,而|PF|c-a,即c-a得a,得,即e,又e1,故1e.【答案】(1)B(2)D(3)Bba43ca5318184c4c34cca434343 22226.1.(1,2); .(2,); . 1,2 ;. 2,xyabABCD如果雙曲線右支上總存在到雙曲線的中心與右焦點(diǎn)距離相等的兩個(gè)異點(diǎn),則雙曲線離心率的取值范圍是B雙曲線雙曲線C: (a0,b0)的右頂點(diǎn))的右頂點(diǎn)A,x軸上軸上有一點(diǎn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 冰雪合同范本
- 減除合同范本
- pos機(jī)押金退還合同范本
- 2025年度房地產(chǎn)融資結(jié)算借款合同范本
- 二手車市場投資合同范本
- 2025年度公共自行車租賃與共享服務(wù)安全保障合同
- 出售經(jīng)紀(jì)服務(wù)合同范本
- 農(nóng)村房子用地改建合同范例
- 俄語供貨合同范例
- 加工紙訂購合同范本
- 第4課+中古時(shí)期的亞洲(教學(xué)設(shè)計(jì))-【中職專用】《世界歷史》(高教版2023基礎(chǔ)模塊)
- 保障性住房建設(shè)資金來源與運(yùn)作機(jī)制
- 金點(diǎn)子活動(dòng)總結(jié)匯報(bào)
- 原料驗(yàn)收標(biāo)準(zhǔn)知識(shí)培訓(xùn)課件
- 江蘇春節(jié)風(fēng)俗 南京夫子廟、鹽水鴨與昆曲
- Unit4MyfamilyStorytime(課件)人教新起點(diǎn)英語三年級(jí)下冊(cè)
- 物流運(yùn)作管理-需求預(yù)測
- 《電機(jī)與電氣控制(第三版)習(xí)題冊(cè)》 習(xí)題答案
- 鋼桁梁頂推施工方案
- 醫(yī)療器械采購方案投標(biāo)方案(完整技術(shù)標(biāo))
- 交通運(yùn)輸安全工作調(diào)研報(bào)告
評(píng)論
0/150
提交評(píng)論