數(shù)二考試大綱2013_第1頁(yè)
數(shù)二考試大綱2013_第2頁(yè)
數(shù)二考試大綱2013_第3頁(yè)
數(shù)二考試大綱2013_第4頁(yè)
數(shù)二考試大綱2013_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2013年與2012年考研數(shù)學(xué)(二)大綱變化對(duì)比及復(fù)習(xí)重點(diǎn)提示科目章節(jié)大綱內(nèi)容2012考研數(shù)學(xué)(二)大綱2013考研數(shù)學(xué)(二)大綱大綱對(duì)比復(fù)習(xí)重點(diǎn)提示高等數(shù)學(xué)一、函數(shù)、極限、連續(xù)考試內(nèi)容函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限與右極限 無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:, 函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函

2、數(shù)的性質(zhì)函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限與右極限 無(wú)窮小量和無(wú)窮大量的概念及其關(guān)系 無(wú)窮小量的性質(zhì)及無(wú)窮小量的比較 極限的四則運(yùn)算 極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個(gè)重要極限:, 函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì)無(wú)變化1.函數(shù)是微積分研究的對(duì)象,函數(shù)這部分的重點(diǎn)是:復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)、基本初等函數(shù)的性質(zhì)及其圖形、初等函數(shù)的概念等;2.極限是研究微積分的工具,極限是

3、本章的重點(diǎn)內(nèi)容,既要準(zhǔn)確理解極限的概念、性質(zhì)和極限存在的條件,又要能準(zhǔn)確的求出各種極限,掌握求極限的各種方法。3.連續(xù)性是可導(dǎo)性與可積性的重要條件,要掌握判斷函數(shù)連續(xù)性與間斷點(diǎn)類型的方法,特別是分段函數(shù)在分界點(diǎn)處的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)??荚囈?理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念5理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系6掌握極限的性質(zhì)及四則運(yùn)算法則7掌握極限存

4、在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法8理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限 9理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)1理解函數(shù)的概念,掌握函數(shù)的表示法,并會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系2了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性3理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念4掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念5理解極限的概念,理解函數(shù)左極限與右極限的概念以及

5、函數(shù)極限存在與左極限、右極限之間的關(guān)系6掌握極限的性質(zhì)及四則運(yùn)算法則7掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法8理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限 9理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類型10了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)無(wú)變化二、一元函數(shù)微分學(xué)考試內(nèi)容導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運(yùn)算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)、隱函

6、數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(dá)(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義和物理意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運(yùn)算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù)一階微分形式的不變性微分中值定理洛必達(dá)(L'Hospital)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線函數(shù)圖形的描繪函數(shù)的最大值與最小值弧微分

7、曲率的概念曲率圓與曲率半徑無(wú)變化1.一元函數(shù)的導(dǎo)數(shù)與微分的概念及其各種計(jì)算方法是微積分學(xué)中最基本又是最重要的概念與計(jì)算之一,重點(diǎn)理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù). 2.微分中值定理是微分學(xué)中最重要的理論部分,重點(diǎn)掌握羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,會(huì)用導(dǎo)數(shù)來(lái)討論函數(shù)的單調(diào)性、極值點(diǎn)、凹凸性與拐點(diǎn),掌握求最值的方法并會(huì)解簡(jiǎn)單的應(yīng)用題。考試要求1理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何

8、意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系2掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分3了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)4會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)5理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會(huì)用柯西( Cauchy )中值定理6掌握用洛必達(dá)法則求未定式極限的方法7理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)

9、極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用8會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間 內(nèi),設(shè)函數(shù) 具有二階導(dǎo)數(shù)當(dāng) 時(shí), 的圖形是凹的;當(dāng) 時(shí), 的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形9了解曲率、曲率圓和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑1理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系2掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微分3了解高

10、階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù)4會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù)5理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會(huì)用柯西( Cauchy )中值定理6掌握用洛必達(dá)法則求未定式極限的方法7理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用8會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間 內(nèi),設(shè)函數(shù) 具有二階導(dǎo)數(shù)當(dāng) 時(shí), 的圖形是凹的;當(dāng) 時(shí), 的圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形9了解曲率、曲率圓和曲率半徑的概

11、念,會(huì)計(jì)算曲率和曲率半徑無(wú)變化三、一元函數(shù)積分學(xué)考試內(nèi)容原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導(dǎo)數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡(jiǎn)單無(wú)理函數(shù)的積分反常(廣義)積分定積分的應(yīng)用原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)及其導(dǎo)數(shù)牛頓-萊布尼茨(Newton-Leibniz)公式不定積分和定積分的換元積分法與分部積分法有理函數(shù)、三角函數(shù)的有理式和簡(jiǎn)單無(wú)理函數(shù)的積分反常(廣義)積分定積分的

12、應(yīng)用無(wú)變化不定積分與定積分是積分學(xué)的基礎(chǔ),在積分的計(jì)算中換元積分和分部積分法是最基本的方法,需要熟練掌握,理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量考試要求1理解原函數(shù)的概念,理解不定積分和定積分的概念2掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法3會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無(wú)理函數(shù)的積分4理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式5了解反常積分的概念,會(huì)計(jì)算反常積分6掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面

13、面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值1理解原函數(shù)的概念,理解不定積分和定積分的概念2掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法3會(huì)求有理函數(shù)、三角函數(shù)有理式和簡(jiǎn)單無(wú)理函數(shù)的積分4理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式5了解反常積分的概念,會(huì)計(jì)算反常積分6掌握用定積分表達(dá)和計(jì)算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值無(wú)變化四、多元函數(shù)微積分學(xué)考試內(nèi)容多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的

14、極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)多元函數(shù)的偏導(dǎo)數(shù)和全微分 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法二階偏導(dǎo)數(shù)多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質(zhì)和計(jì)算多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)多元函數(shù)的偏導(dǎo)數(shù)和全微分 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法二階偏導(dǎo)數(shù)多元函數(shù)的極值和條件極值、最大值和最小值二重積分的概念、基本性質(zhì)和計(jì)算無(wú)變化1.多元函數(shù)重點(diǎn)研究的是二元函數(shù),重點(diǎn)掌握二元函數(shù)的偏導(dǎo)數(shù)、可微性、全微分,了解全微分存在的必要條件及充分條件,會(huì)求多元復(fù)合函數(shù)及隱函數(shù)的一階與二階偏導(dǎo)數(shù)或全微分;2.多元函數(shù)微分學(xué)的一個(gè)重要

15、應(yīng)用時(shí)多元函數(shù)的最值問(wèn)題,包括簡(jiǎn)單的極值問(wèn)題與條件極值問(wèn);3.多元函數(shù)積分學(xué)重點(diǎn)掌握二重積分的計(jì)算??荚囈?了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)3了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)4了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問(wèn)題5了解二重積分的概念與基本性質(zhì),掌握二重積分的

16、計(jì)算方法(直角坐標(biāo)、極坐標(biāo))1了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義2了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)3了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,了解隱函數(shù)存在定理,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù)4了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會(huì)求二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值,會(huì)求簡(jiǎn)單多元函數(shù)的最大值和最小值,并會(huì)解決一些簡(jiǎn)單的應(yīng)用問(wèn)題5了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法(直角坐標(biāo)、極坐標(biāo))無(wú)變化五、常微分方程考試內(nèi)容常微分方程的基本概念變量

17、可分離的微分方程齊次微分方程一階線性微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡(jiǎn)單的二階常系數(shù)非齊次線性微分方程微分方程的簡(jiǎn)單應(yīng)用常微分方程的基本概念變量可分離的微分方程齊次微分方程一階線性微分方程可降階的高階微分方程線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理二階常系數(shù)齊次線性微分方程高于二階的某些常系數(shù)齊次線性微分方程簡(jiǎn)單的二階常系數(shù)非齊次線性微分方程微分方程的簡(jiǎn)單應(yīng)用無(wú)變化常微分方程研究的對(duì)象就是常微分方程解的性質(zhì)與求法,需要重點(diǎn)掌握如何求解不同類型的微分方程,主要包括一階線性微分方程和二階常系數(shù)線性微分方程,理解線

18、性微分方程解的性質(zhì)和解的結(jié)構(gòu),對(duì)于微分方程的應(yīng)用問(wèn)題要會(huì)建立方程??荚囈?了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程及一階線性微分方程的解法,會(huì)解齊次微分方程3會(huì)用降階法解下列形式的微分方程: 和 4理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理5掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程6會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程7會(huì)用微分方程解決一些簡(jiǎn)單的應(yīng)用問(wèn)題1了解微分方程及其階、解、通解、初始條件和特解等概念2掌握變量可分離的微分方程及一階線性微分方程的解法,會(huì)解

19、齊次微分方程3會(huì)用降階法解下列形式的微分方程: 和 4理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理5掌握二階常系數(shù)齊次線性微分方程的解法,并會(huì)解某些高于二階的常系數(shù)齊次線性微分方程6會(huì)解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程7會(huì)用微分方程解決一些簡(jiǎn)單的應(yīng)用問(wèn)題無(wú)變化線性代數(shù)一、行列式考試內(nèi)容行列式的概念和基本性質(zhì)行列式按行(列)展開定理行列式的概念和基本性質(zhì)行列式按行(列)展開定理無(wú)變化行列式的重點(diǎn)是計(jì)算,應(yīng)當(dāng)理解n階行列式的概念、掌握行列式的性質(zhì)考試要求1了解行列式的概念,掌握行列式的性質(zhì) 2會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行

20、列式1了解行列式的概念,掌握行列式的性質(zhì) 2會(huì)應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計(jì)算行列式無(wú)變化二、矩陣考試內(nèi)容矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià) 分塊矩陣及其運(yùn)算矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià) 分塊矩陣及其運(yùn)算無(wú)變化矩陣是線性代數(shù)的核心,矩陣的概念、運(yùn)算及理論貫穿線性代數(shù)的始終,要熟練掌握矩陣的運(yùn)算、理解逆矩陣的概念,掌握逆矩陣的性質(zhì),以及

21、矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣?yán)斫饩仃嚨闹鹊母拍?,掌握用初等變換求矩陣的秩和逆矩陣的方法考試要求1理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對(duì)角矩陣、三角矩陣、對(duì)稱矩陣、反對(duì)稱矩陣和正交矩陣以及它們的性質(zhì)2掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)3理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣4了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法5了解分塊矩陣及其運(yùn)算1理解矩陣的概念,了解單位矩陣、

22、數(shù)量矩陣、對(duì)角矩陣、三角矩陣、對(duì)稱矩陣、反對(duì)稱矩陣和正交矩陣以及它們的性質(zhì)2掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì)3理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件理解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣4了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法5了解分塊矩陣及其運(yùn)算無(wú)變化三、向量考試內(nèi)容向量的概念向量的線性組合和線性表示向量組的線性相關(guān)與線性無(wú)關(guān)向量組的極大線性無(wú)關(guān)組等價(jià)向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量的內(nèi)積線性無(wú)關(guān)向量組的的正交規(guī)范化方

23、法向量的概念向量的線性組合和線性表示向量組的線性相關(guān)與線性無(wú)關(guān)向量組的極大線性無(wú)關(guān)組等價(jià)向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系向量的內(nèi)積線性無(wú)關(guān)向量組的的正交規(guī)范化方法無(wú)變化向量是線性代數(shù)的重點(diǎn)之一,也是難點(diǎn),應(yīng)理解向量的線性組合,掌握求線性表出的方法,理解線性相關(guān)無(wú)關(guān)的概念,重點(diǎn)掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法要理解向量組的極大線性無(wú)關(guān)組的概念,掌握其求法,要理解向量組秩的概念,會(huì)求向量組的秩,了解內(nèi)積的概念掌握施密特正交化方法。考試要求1理解 維向量、向量的線性組合與線性表示的概念2理解向量組線性相關(guān)、線性無(wú)關(guān)的概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法3了

24、解向量組的極大線性無(wú)關(guān)組和向量組的秩的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩 4了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系5了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法1理解 維向量、向量的線性組合與線性表示的概念2理解向量組線性相關(guān)、線性無(wú)關(guān)的概念,掌握向量組線性相關(guān)、線性無(wú)關(guān)的有關(guān)性質(zhì)及判別法3了解向量組的極大線性無(wú)關(guān)組和向量組的秩的概念,會(huì)求向量組的極大線性無(wú)關(guān)組及秩 4了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系5了解內(nèi)積的概念,掌握線性無(wú)關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法無(wú)變化四、線性方程組考試內(nèi)容線性方

25、程組的克萊姆(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質(zhì)和解的結(jié)構(gòu)齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的通解線性方程組的克萊姆(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質(zhì)和解的結(jié)構(gòu)齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的通解無(wú)變化線性方程組是線性代數(shù)的基礎(chǔ)內(nèi)容之一,也是考察的重點(diǎn)內(nèi)容,要理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件會(huì)求基礎(chǔ)解系、通解,理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念考試要求1會(huì)用克萊姆法則2理解

26、齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件3理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組基礎(chǔ)解系和通解的求法4理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念5會(huì)用初等行變換求解線性方程組1會(huì)用克萊姆法則2理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件3理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組基礎(chǔ)解系和通解的求法4理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念5會(huì)用初等行變換求解線性方程組無(wú)變化五、矩陣的特征值和特征向量考試內(nèi)容矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對(duì)角化的充分必要條件及相似對(duì)角矩陣 實(shí)對(duì)稱矩陣的特征值、特征向量及其相似對(duì)角矩陣矩陣的特征值和特征向量的概念、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論