初中數(shù)學(xué)基礎(chǔ)知識點總結(jié)_第1頁
初中數(shù)學(xué)基礎(chǔ)知識點總結(jié)_第2頁
初中數(shù)學(xué)基礎(chǔ)知識點總結(jié)_第3頁
初中數(shù)學(xué)基礎(chǔ)知識點總結(jié)_第4頁
初中數(shù)學(xué)基礎(chǔ)知識點總結(jié)_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、初中數(shù)學(xué)基礎(chǔ)知識點總結(jié)一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù):整數(shù)正整數(shù)/0/負(fù)整數(shù)分?jǐn)?shù)正分?jǐn)?shù)/負(fù)分?jǐn)?shù) 數(shù)軸: 畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。 任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。 如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。 數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。 絕對值: 在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。 正數(shù)的絕對值是他的

2、本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負(fù)數(shù)比較大小,絕對值大的反而小。 有理數(shù)的運算:加法: 同號相加,取相同的符號,把絕對值相加。 異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。 一個數(shù)與0相加不變。 減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。 乘法: 兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。 任何數(shù)與0相乘得0。 乘積為1的兩個有理數(shù)互為倒數(shù)。 除法: 除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。 0不能作除數(shù)。 乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。 混合順序:先算乘法,再算乘除,最后算加

3、減,有括號要先算括號里的。 2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù) 平方根: 如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。 如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。 一個正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。 求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。 立方根: 如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。 正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。 求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。 實數(shù): 實數(shù)分有理數(shù)和無理數(shù)。 在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù)

4、,絕對值的意義完全一樣。 每一個實數(shù)都可以在數(shù)軸上的一個點來表示。 3、代數(shù)式 代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。 合并同類項:所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。把同類項合并成一項就叫做合并同類項。在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 4、整式與分式 整式: 數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。 一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。 一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。 整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。 冪的運算:AM+AN=A(M+N

5、) (AM)N=AMN (A/B)N=AN/BN 除法一樣。 整式的乘法: 單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。 單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。 多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法: 單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。 多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 分解因式:

6、把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。 方法:提公因式法、運用公式法、分組分解法、十字相乘法。 分式: 整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。 分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。 分式的運算: 乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。 除法:除以一個分式等于乘以這個分式的倒數(shù)。 加減法: 同分母分式相加減,分母不變,把分子相加減。 異分母的分式先通分,化為同分母的分式,再加減。 分式方程: 分母中含有未知數(shù)的方程叫分式方程。 使方程的分母為0的解稱為原方程的增根

7、。 B、方程與不等式 1、方程與方程組 一元一次方程: 在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。 等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。 二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。 二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。 適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。 二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。 解二元一次方程組的方法:代入消元法

8、/加減消元法。 一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程 1)一元二次方程的二次函數(shù)的關(guān)系 大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了 2)一元二次方程的解法 大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有

9、自己的一個解法,利用他可以求出所有的一元一次方程的解 (1)配方法 利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解 (2)分解因式法 提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解 (3)公式法 這方法也可以是在解一元二次方程的萬能方法了,方程的根X1=-b+b2-4ac)/2a,X2=-b-b2-4ac)/2a 3)解一元二次方程的步驟: (1)配方法的步驟: 先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式 (2)分解因式法的步驟: 把方程右邊化為0,然后看看是

10、否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式 (3)公式法 就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c 4)韋達(dá)定理 利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a 也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用 5)一元一次方程根的情況 利用根的判別式去了解,根的判別式可在書面上可以寫為“”,讀作“diao ta”,而=b2-4ac,這里可以分為3種情況: I當(dāng)>0時,一元二次方程

11、有2個不相等的實數(shù)根; II當(dāng)=0時,一元二次方程有2個相同的實數(shù)根; III當(dāng)B,A+C>B+C 在不等式中,如果減去同一個數(shù)(或加上一個負(fù)數(shù)),不等式符號不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0) 在不等式中,如果乘以同一個負(fù)數(shù),不等號改向;例如:A>B,A*C 如果不等式乘以0,那么不等號改為等號 所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立; 3、函數(shù) 變量:因變量,自變量。 在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。 一次函數(shù): 若兩個變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。 當(dāng)B=0時,稱Y是X的正比例函數(shù)。 一次函數(shù)的圖象: 把一個函數(shù)的自變量X與對應(yīng)的因變量Y的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論