![導(dǎo)數(shù)的切線方程和圖像知識(shí)點(diǎn)與習(xí)題_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/7/82a5592c-4417-44e9-ae25-03a432b4e1cd/82a5592c-4417-44e9-ae25-03a432b4e1cd1.gif)
![導(dǎo)數(shù)的切線方程和圖像知識(shí)點(diǎn)與習(xí)題_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/7/82a5592c-4417-44e9-ae25-03a432b4e1cd/82a5592c-4417-44e9-ae25-03a432b4e1cd2.gif)
![導(dǎo)數(shù)的切線方程和圖像知識(shí)點(diǎn)與習(xí)題_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/7/82a5592c-4417-44e9-ae25-03a432b4e1cd/82a5592c-4417-44e9-ae25-03a432b4e1cd3.gif)
![導(dǎo)數(shù)的切線方程和圖像知識(shí)點(diǎn)與習(xí)題_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/7/82a5592c-4417-44e9-ae25-03a432b4e1cd/82a5592c-4417-44e9-ae25-03a432b4e1cd4.gif)
![導(dǎo)數(shù)的切線方程和圖像知識(shí)點(diǎn)與習(xí)題_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-2/7/82a5592c-4417-44e9-ae25-03a432b4e1cd/82a5592c-4417-44e9-ae25-03a432b4e1cd5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、導(dǎo) 數(shù)導(dǎo) 數(shù)導(dǎo)數(shù)的概念導(dǎo)數(shù)的運(yùn)算導(dǎo)數(shù)的應(yīng)用導(dǎo)數(shù)的幾何意義、物理意義函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值常見(jiàn)函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)的運(yùn)算法則1. 導(dǎo)數(shù)(導(dǎo)函數(shù)的簡(jiǎn)稱)的定義:設(shè)是函數(shù)定義域的一點(diǎn),如果自變量在處有增量,則函數(shù)值也引起相應(yīng)的增量;比值稱為函數(shù)在點(diǎn)到之間的平均變化率;如果極限存在,則稱函數(shù)在點(diǎn)處可導(dǎo),并把這個(gè)極限叫做在處的導(dǎo)數(shù),記作或,即=.注:是增量,我們也稱為“改變量”,因?yàn)榭烧韶?fù),但不為零.以知函數(shù)定義域?yàn)?,的定義域?yàn)椋瑒t與關(guān)系為.2. 函數(shù)在點(diǎn)處連續(xù)與點(diǎn)處可導(dǎo)的關(guān)系:函數(shù)在點(diǎn)處連續(xù)是在點(diǎn)處可導(dǎo)的必要不充分條件.可以證明,如果在點(diǎn)處可導(dǎo),那么點(diǎn)處連續(xù).事實(shí)上,令,則相當(dāng)于.于是如果點(diǎn)處
2、連續(xù),那么在點(diǎn)處可導(dǎo),是不成立的.例:在點(diǎn)處連續(xù),但在點(diǎn)處不可導(dǎo),因?yàn)?,?dāng)0時(shí),;當(dāng)0時(shí),故不存在.注:可導(dǎo)的奇函數(shù)函數(shù)其導(dǎo)函數(shù)為偶函數(shù).可導(dǎo)的偶函數(shù)函數(shù)其導(dǎo)函數(shù)為奇函數(shù).3. 導(dǎo)數(shù)的幾何意義:函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義就是曲線在點(diǎn)處的切線的斜率,也就是說(shuō),曲線在點(diǎn)P處的切線的斜率是,切線方程為4. 求導(dǎo)數(shù)的四則運(yùn)算法則:(為常數(shù))注:必須是可導(dǎo)函數(shù).若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).例如:設(shè),則在處均不可導(dǎo),但它們和在處均可導(dǎo).5. 復(fù)合函數(shù)的求導(dǎo)法則:或復(fù)合函數(shù)的求導(dǎo)法則可推廣到多個(gè)中間變量的情形.6. 函數(shù)單調(diào)性:函數(shù)單調(diào)
3、性的判定方法:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果0,則為增函數(shù);如果0,則為減函數(shù).常數(shù)的判定方法;如果函數(shù)在區(qū)間內(nèi)恒有=0,則為常數(shù).注:是f(x)遞增的充分條件,但不是必要條件,如在上并不是都有,有一個(gè)點(diǎn)例外即x=0時(shí)f(x) = 0,同樣是f(x)遞減的充分非必要條件.一般地,如果f(x)在某區(qū)間內(nèi)有限個(gè)點(diǎn)處為零,在其余各點(diǎn)均為正(或負(fù)),那么f(x)在該區(qū)間上仍舊是單調(diào)增加(或單調(diào)減少)的.7. 極值的判別方法:(極值是在附近所有的點(diǎn),都有,則是函數(shù)的極大值,極小值同理)當(dāng)函數(shù)在點(diǎn)處連續(xù)時(shí),如果在附近的左側(cè)0,右側(cè)0,那么是極大值;如果在附近的左側(cè)0,右側(cè)0,那么是極小值.也就是說(shuō)是極值點(diǎn)的
4、充分條件是點(diǎn)兩側(cè)導(dǎo)數(shù)異號(hào),而不是=0. 此外,函數(shù)不可導(dǎo)的點(diǎn)也可能是函數(shù)的極值點(diǎn). 當(dāng)然,極值是一個(gè)局部概念,極值點(diǎn)的大小關(guān)系是不確定的,即有可能極大值比極小值小(函數(shù)在某一點(diǎn)附近的點(diǎn)不同).注: 若點(diǎn)是可導(dǎo)函數(shù)的極值點(diǎn),則=0. 但反過(guò)來(lái)不一定成立. 對(duì)于可導(dǎo)函數(shù),其一點(diǎn)是極值點(diǎn)的必要條件是若函數(shù)在該點(diǎn)可導(dǎo),則導(dǎo)數(shù)值為零.例如:函數(shù),使=0,但不是極值點(diǎn).例如:函數(shù),在點(diǎn)處不可導(dǎo),但點(diǎn)是函數(shù)的極小值點(diǎn).8. 極值與最值的區(qū)別:極值是在局部對(duì)函數(shù)值進(jìn)行比較,最值是在整體區(qū)間上對(duì)函數(shù)值進(jìn)行比較.注:函數(shù)的極值點(diǎn)一定有意義.9. 幾種常見(jiàn)的函數(shù)導(dǎo)數(shù):I.(為常數(shù)) () II. III. 求導(dǎo)的常
5、見(jiàn)方法:常用結(jié)論:.形如或兩邊同取自然對(duì)數(shù),可轉(zhuǎn)化求代數(shù)和形式.無(wú)理函數(shù)或形如這類函數(shù),如取自然對(duì)數(shù)之后可變形為,對(duì)兩邊求導(dǎo)可得.用導(dǎo)數(shù)求切線方程的四種類型求曲線的切線方程是導(dǎo)數(shù)的重要應(yīng)用之一,用導(dǎo)數(shù)求切線方程的關(guān)鍵在于求出切點(diǎn)及斜率,其求法為:設(shè)是曲線上的一點(diǎn),則以的切點(diǎn)的切線方程為:若曲線在點(diǎn)的切線平行于軸(即導(dǎo)數(shù)不存在)時(shí),由切線定義知,切線方程為下面例析四種常見(jiàn)的類型及解法類型一:已知切點(diǎn),求曲線的切線方程此類題較為簡(jiǎn)單,只須求出曲線的導(dǎo)數(shù),并代入點(diǎn)斜式方程即可例1曲線在點(diǎn)處的切線方程為() 類型二:已知斜率,求曲線的切線方程此類題可利用斜率求出切點(diǎn),再用點(diǎn)斜式方程加以解決例2與直線的
6、平行的拋物線的切線方程是() 類型三:已知過(guò)曲線上一點(diǎn),求切線方程過(guò)曲線上一點(diǎn)的切線,該點(diǎn)未必是切點(diǎn),故應(yīng)先設(shè)切點(diǎn),再求切點(diǎn),即用待定切點(diǎn)法例3 求過(guò)曲線上的點(diǎn)的切線方程類型四:已知過(guò)曲線外一點(diǎn),求切線方程此類題可先設(shè)切點(diǎn),再求切點(diǎn),即用待定切點(diǎn)法來(lái)求解例4求過(guò)點(diǎn)且與曲線相切的直線方程例5已知函數(shù),過(guò)點(diǎn)作曲線的切線,求此切線方程函數(shù)圖象及其導(dǎo)函數(shù)圖象1. 函數(shù)在定義域內(nèi)可導(dǎo),其圖象如圖,記的導(dǎo)函數(shù)為,則不等式的解集為_(kāi) 2. 函數(shù)的定義域?yàn)殚_(kāi)區(qū)間,導(dǎo)函數(shù)在內(nèi)的圖象如圖所示,則函數(shù)的單調(diào)增區(qū)間是_3. 如圖為函數(shù)的圖象,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為_(kāi) _ 4. 若函數(shù)的圖象的頂點(diǎn)在第四象限,
7、則其導(dǎo)函數(shù)的圖象是( )5. 函數(shù)的圖象過(guò)原點(diǎn)且它的導(dǎo)函數(shù)的圖象是如圖所示的一條直線,則圖象的頂點(diǎn)在( )A第一象限 B第二象限 C第三象限 D第四象限O12xyO12xyxyyO12yO12xO12xABCD6. (2007年廣東佛山)設(shè)是函數(shù)的導(dǎo)函數(shù),的圖象如右圖所示,則的圖象最有可能的是()7. 設(shè)函數(shù)f(x)在定義域內(nèi)可導(dǎo),y=f(x)的圖象如下左圖所示,則導(dǎo)函數(shù)y=f (x)的圖象可能為()8. (安微省合肥市2010年高三第二次教學(xué)質(zhì)量檢測(cè)文科)函數(shù)的圖像如下右圖所示,則的圖像可能是 ()xoy9. (2010年3月廣東省深圳市高三年級(jí)第一次調(diào)研考試文科)已知函數(shù)的導(dǎo)函數(shù)的圖象如右
8、圖,則的圖象可能是( )10. (2010年浙江省寧波市高三“十?!甭?lián)考文科)如右圖所示是某一容器的三視圖,現(xiàn)向容器中勻速注水,容器中水面的高度隨時(shí)間變化的可能圖象是( )(A) (B) (C) (D)11. (2008廣州二模文、理)已知二次函數(shù)的圖象如圖1所示 , 則其導(dǎo)函數(shù)的圖象大致形狀是( )12. (2009湖南卷文)若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是增函數(shù),則函數(shù)在區(qū)間上的圖象可能是 ( )yababaoxoxybaoxyoxybA B C D13. (福建卷11)如果函數(shù)的圖象如右圖,那么導(dǎo)函數(shù)的圖象可能是( )14. (2008年福建卷12)已知函數(shù)y=f(x),y=g(x)的導(dǎo)函數(shù)的圖
9、象如下圖,那么y=f(x),y=g(x)的圖象可能是( )15. (2008珠海一模文、理)設(shè)是函數(shù)的導(dǎo)函數(shù),將和的圖像畫(huà)在同一個(gè)直角坐標(biāo)系中,不可能正確的是( )ABCDxyx4OoO16. (湖南省株洲市2008屆高三第二次質(zhì)檢)已知函數(shù)的導(dǎo)函數(shù)的圖像如下,則( )函數(shù)有1個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn)函數(shù)有2個(gè)極大值點(diǎn),2個(gè)極小值點(diǎn)函數(shù)有3個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn)函數(shù)有1個(gè)極大值點(diǎn),3個(gè)極小值點(diǎn)17. (2008珠海質(zhì)檢理)函數(shù)的定義域?yàn)?,其?dǎo)函數(shù)內(nèi)的圖象如圖所示,則函數(shù)在區(qū)間內(nèi)極小值點(diǎn)的個(gè)數(shù)是( )(A).1 (B).2 (C).3 (D).418. 【湛江市文】函數(shù)的圖象大致是 19. 【
10、珠海文】如圖是二次函數(shù)的部分圖象,則函數(shù)的零點(diǎn)所在的區(qū)間是 ( ) A. B. C. D.20. 定義在R上的函數(shù)滿足為的導(dǎo)函數(shù),已知函數(shù)的圖象如右圖所示.若兩正數(shù)滿足,則的取值范圍是 ( )A B C D21. 已知函數(shù)在點(diǎn)處取得極大值,其導(dǎo)函數(shù)的圖象經(jīng)過(guò)點(diǎn),如圖所示.求:()的值;()的值.1解:由則在點(diǎn)處斜率,故所求的切線方程為,即,因而選2 解:設(shè)為切點(diǎn),則切點(diǎn)的斜率為由此得到切點(diǎn)故切線方程為,即,故選評(píng)注:此題所給的曲線是拋物線,故也可利用法加以解決,即設(shè)切線方程為,代入,得,又因?yàn)椋?,故選3解:設(shè)想為切點(diǎn),則切線的斜率為切線方程為又知切線過(guò)點(diǎn),把它代入上述方程,得解得,或故所求切線方程為,或,即,或評(píng)注:可以發(fā)現(xiàn)直線并不以為切點(diǎn),實(shí)際上是經(jīng)過(guò)了點(diǎn)且以為切點(diǎn)的直線這說(shuō)明過(guò)曲線上一點(diǎn)的切線,該點(diǎn)未必是切點(diǎn),解決此類問(wèn)題可用待定切點(diǎn)法4解:設(shè)為切點(diǎn),則切線的斜率為切線方程為,即又已知切線過(guò)點(diǎn),把它代入上述方程,得解得,即評(píng)注:點(diǎn)實(shí)際上是曲
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 游戲類直播平臺(tái)的用戶行為分析與優(yōu)化策略研究
- 現(xiàn)代舞臺(tái)背景屏技術(shù)革新與發(fā)展
- 環(huán)保材料在辦公環(huán)境建設(shè)中的應(yīng)用
- 生產(chǎn)過(guò)程中的危機(jī)應(yīng)對(duì)與風(fēng)險(xiǎn)化解
- 未來(lái)十年電動(dòng)汽車市場(chǎng)預(yù)測(cè)與展望
- 生態(tài)系統(tǒng)服務(wù)在商業(yè)地產(chǎn)開(kāi)發(fā)中的應(yīng)用
- 現(xiàn)代網(wǎng)絡(luò)技術(shù)企業(yè)管理的重要支撐
- 18《書(shū)湖陰先生壁》說(shuō)課稿-2024-2025學(xué)年統(tǒng)編版語(yǔ)文六年級(jí)上冊(cè)
- Unit1 Nature Grammar in Use 3說(shuō)課稿-2024-2025學(xué)年高中英語(yǔ)上外版必修第二冊(cè)
- Unit 2 Different families Part B Let's learn(說(shuō)課稿)-2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)001
- 江蘇省蘇州市2024-2025學(xué)年高三上學(xué)期1月期末生物試題(有答案)
- 銷售與銷售目標(biāo)管理制度
- 特殊教育學(xué)校2024-2025學(xué)年度第二學(xué)期教學(xué)工作計(jì)劃
- 2025年第一次工地開(kāi)工會(huì)議主要議程開(kāi)工大吉模板
- 第16課抗日戰(zhàn)爭(zhēng)課件-人教版高中歷史必修一
- 對(duì)口升學(xué)語(yǔ)文模擬試卷(9)-江西省(解析版)
- 糖尿病高滲昏迷指南
- 【公開(kāi)課】同一直線上二力的合成+課件+2024-2025學(xué)年+人教版(2024)初中物理八年級(jí)下冊(cè)+
- 南京信息工程大學(xué)《教師領(lǐng)導(dǎo)力》2021-2022學(xué)年第一學(xué)期期末試卷
- 信息科技大單元教學(xué)設(shè)計(jì)之七年級(jí)第三單元便捷的互聯(lián)網(wǎng)服務(wù)
- 急性心梗課件
評(píng)論
0/150
提交評(píng)論