




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、勾股定理的證明【證法1】(課本的證明) 做8個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b,斜邊長為c,再做三個邊長分別為a、b、c的正方形,把它們像上圖那樣拼成兩個正方形.從圖上可以看到,這兩個正方形的邊長都是a + b,所以面積相等. 即, 整理得 .【證法2】(鄒元治證明)以a、b 為直角邊,以c為斜邊做四個全等的直角三角形,則每個直角三角形的面積等于. 把這四個直角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上,B、F、C三點在一條直線上,C、G、D三點在一條直線上.
2、RtHAE RtEBF, AHE = BEF. AEH + AHE = 90º, AEH + BEF = 90º. HEF = 180º90º= 90º. 四邊形EFGH是一個邊長為c的正方形. 它的面積等于c2. RtGDH RtHAE, HGD = EHA. HGD + GHD = 90º, EHA + GHD = 90º.又 GHE = 90º, DHA = 90º+ 90º= 180º. ABCD是一個邊長為a + b的正方形,它的面積等于. . .【證法3】(趙爽證明)以a、
3、b 為直角邊(b>a), 以c為斜邊作四個全等的直角三角形,則每個直角三角形的面積等于. 把這四個直角三角形拼成如圖所示形狀. RtDAH RtABE, HDA = EAB. HAD + HAD = 90º, EAB + HAD = 90º, ABCD是一個邊長為c的正方形,它的面積等于c2. EF = FG =GH =HE = ba ,HEF = 90º. EFGH是一個邊長為ba的正方形,它的面積等于. . .【證法4】(1876年美國總統(tǒng)Garfield證明)以a、b 為直角邊,以c為斜邊作兩個全等的直角三角形,則每個直角三角形的面積等于. 把這兩個直
4、角三角形拼成如圖所示形狀,使A、E、B三點在一條直線上. RtEAD RtCBE, ADE = BEC. AED + ADE = 90º, AED + BEC = 90º. DEC = 180º90º= 90º. DEC是一個等腰直角三角形,它的面積等于.又 DAE = 90º, EBC = 90º, ADBC. ABCD是一個直角梯形,它的面積等于. . .【證法5】(梅文鼎證明)做四個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b ,斜邊長為c. 把它們拼成如圖那樣的一個多邊形,使D、E、F在一條直線上. 過C作AC
5、的延長線交DF于點P. D、E、F在一條直線上, 且RtGEF RtEBD, EGF = BED, EGF + GEF = 90°, BED + GEF = 90°, BEG =180º90º= 90º.又 AB = BE = EG = GA = c, ABEG是一個邊長為c的正方形. ABC + CBE = 90º. RtABC RtEBD, ABC = EBD. EBD + CBE = 90º. 即 CBD= 90º.又 BDE = 90º,BCP = 90º,BC = BD = a. BD
6、PC是一個邊長為a的正方形.同理,HPFG是一個邊長為b的正方形.設(shè)多邊形GHCBE的面積為S,則, . 【證法6】(項明達證明)做兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形,使E、A、C三點在一條直線上.過點Q作QPBC,交AC于點P. 過點B作BMPQ,垂足為M;再過點F作FNPQ,垂足為N. BCA = 90º,QPBC, MPC = 90º, BMPQ, BMP = 90º, BCPM是一個矩形,即MBC = 90º. QBM + MBA
7、 = QBA = 90º,ABC + MBA = MBC = 90º, QBM = ABC,又 BMP = 90º,BCA = 90º,BQ = BA = c, RtBMQ RtBCA.同理可證RtQNF RtAEF.從而將問題轉(zhuǎn)化為【證法4】(梅文鼎證明).【證法9】(楊作玫證明)做兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c. 再做一個邊長為c的正方形. 把它們拼成如圖所示的多邊形. 過A作AFAC,AF交GT于F,AF交DT于R. 過B作BPAF,垂足為P. 過D作DE與CB的延長線垂直,垂足為E,DE交AF于
8、H. BAD = 90º,PAC = 90º, DAH = BAC.又 DHA = 90º,BCA = 90º,AD = AB = c, RtDHA RtBCA. DH = BC = a,AH = AC = b.由作法知PBCA 是一個矩形,所以 RtAPB RtBCA. 即PB = CA = b,AP= a,從而PH = ba. RtDGT RtBCA , RtDHA RtBCA. RtDGT RtDHA . DH = DG = a,GDT = HDA . 又 DGT = 90º,DHF = 90º,GDH = GDT + TDH
9、= HDA+ TDH = 90º, DGFH是一個邊長為a的正方形. GF = FH = a . TFAF,TF = GTGF = ba . TFPB是一個直角梯形,上底TF=ba,下底BP= b,高FP=a +(ba).用數(shù)字表示面積的編號(如圖),則以c為邊長的正方形的面積為 = , = . 把代入,得= = . . 【證法8】(利用相似三角形性質(zhì)證明)如圖,在RtABC中,設(shè)直角邊AC、BC的長度分別為a、b,斜邊AB的長為c,過點C作CDAB,垂足是D. 在ADC和ACB中, ADC = ACB = 90º,CAD = BAC, ADC ACB.ADAC
10、= AC AB,即 .同理可證,CDB ACB,從而有 . ,即 .【證法7】(歐幾里得證明)做三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點在一條直線上,連結(jié)BF、CD. 過C作CLDE,交AB于點M,交DE于點L. AF = AC,AB = AD,F(xiàn)AB = GAD, FAB GAD, FAB的面積等于,GAD的面積等于矩形ADLM的面積的一半, 矩形ADLM的面積 =.同理可證,矩形MLEB的面積 =. 正方形ADEB的面積 = 矩形ADLM的面積 + 矩形MLEB的面積 ,即 .【證法10】(李銳證明)設(shè)直角三角形兩直角邊的長分別為a、b(b>a),斜
11、邊的長為c. 做三個邊長分別為a、b、c的正方形,把它們拼成如圖所示形狀,使A、E、G三點在一條直線上. 用數(shù)字表示面積的編號(如圖). TBE = ABH = 90º, TBH = ABE.又 BTH = BEA = 90º,BT = BE = b, RtHBT RtABE. HT = AE = a. GH = GTHT = ba.又 GHF + BHT = 90º,DBC + BHT = TBH + BHT = 90º, GHF = DBC. DB = EBED = ba,HGF = BDC = 90º, RtHGF RtBDC. 即 .過
12、Q作QMAG,垂足是M. 由BAQ = BEA = 90º,可知 ABE= QAM,而AB = AQ = c,所以RtABE RtQAM . 又RtHBT RtABE. 所以RtHBT RtQAM . 即 . 由RtABE RtQAM,又得QM = AE = a,AQM = BAE. AQM + FQM = 90º,BAE + CAR = 90º,AQM = BAE, FQM = CAR.又 QMF = ARC = 90º,QM = AR = a, RtQMF RtARC. 即. ,又 , =,即 . 【證法11】(利用切割線定理證
13、明)在RtABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c. 如圖,以B為圓心a為半徑作圓,交AB及AB的延長線分別于D、E,則BD = BE = BC = a. 因為BCA = 90º,點C在B上,所以AC是B 的切線. 由切割線定理,得= ,即, . 【證法12】(利用多列米定理證明)在RtABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c(如圖). 過點A作ADCB,過點B作BDCA,則ACBD為矩形,矩形ACBD內(nèi)接于一個圓. 根據(jù)多列米定理,圓內(nèi)接四邊形對角線的乘積等于兩對邊乘積之和,有, AB = DC = c,AD = BC = a,
14、AC = BD = b, ,即 , . 【證法13】(作直角三角形的內(nèi)切圓證明)在RtABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c. 作RtABC的內(nèi)切圓O,切點分別為D、E、F(如圖),設(shè)O的半徑為r. AE = AF,BF = BD,CD = CE, = = r + r = 2r,即 , . ,即 , , ,又 = = = = , , , , .【證法14】(利用反證法證明)如圖,在RtABC中,設(shè)直角邊AC、BC的長度分別為a、b,斜邊AB的長為c,過點C作CDAB,垂足是D. 假設(shè),即假設(shè) ,則由=可知 ,或者 . 即 AD:ACAC:AB,或者 BD:BC
15、BC:AB.在ADC和ACB中, A = A, 若 AD:ACAC:AB,則ADCACB.在CDB和ACB中, B = B, 若BD:BCBC:AB,則CDBACB.又 ACB = 90º, ADC90º,CDB90º.這與作法CDAB矛盾. 所以,的假設(shè)不能成立. . 【證法15】(辛卜松證明) 設(shè)直角三角形兩直角邊的長分別為a、b,斜邊的長為c. 作邊長是a+b的正方形ABCD. 把正方形ABCD劃分成上方左圖所示的幾個部分,則正方形ABCD的面積為 ;把正方形ABCD劃分成上方右
16、圖所示的幾個部分,則正方形ABCD的面積為 =. , . 【證法16】(陳杰證明)設(shè)直角三角形兩直角邊的長分別為a、b(b>a),斜邊的長為c. 做兩個邊長分別為a、b的正方形(b>a),把它們拼成如圖所示形狀,使E、H、M三點在一條直線上. 用數(shù)字表示面積的編號(如圖).在EH = b上截取ED = a,連結(jié)DA、DC,則 AD = c. EM = EH + HM = b + a , ED = a, DM = EMED = a = b.又 CMD = 90º,CM = a,AED = 90º, AE = b, RtAED RtDMC. EAD = MDC,DC = AD = c. ADE + ADC+ MDC =180º,ADE + MDC = ADE + EAD = 90º, A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年6人股東合作協(xié)議書模板
- 五年級上冊數(shù)學(xué)教案-4.4 探索活動:三角形的面積(8)-北師大版
- 五年級下冊數(shù)學(xué)教案-3.2 2和5的倍數(shù)的特征丨蘇教版
- 8-數(shù)學(xué)廣角-搭配(二)-人教版三年級下冊數(shù)學(xué)單元測試卷(含答案和解析)-
- 《木蘭詩》歷年中考古詩欣賞試題匯編(截至2024年)
- Unit Six《 Lesson 17 Happy Chinese New Year to Our Family!》(教學(xué)設(shè)計)-2024-2025學(xué)年北京版(2024)英語一年級上冊
- 2024年磁粉離合器項目資金需求報告代可行性研究報告
- 2025年度個人與環(huán)??萍脊经h(huán)保項目提成合同
- 2025年度便利店加盟店合作協(xié)議
- 2025年度離職員工解除勞動合同保密協(xié)議書及保密承諾書
- 論電視劇《知否知否應(yīng)是綠肥紅瘦》的現(xiàn)代家庭教育觀及啟示
- (正式版)JTT 421-2024 港口固定式起重機安全要求
- 地連墻施工MJS工法樁施工方案
- 《電力建設(shè)施工技術(shù)規(guī)范 第2部分:鍋爐機組》DLT 5190.2
- 教案設(shè)計常見問題及解決措施
- (正式版)JBT 14682-2024 多關(guān)節(jié)機器人用伺服電動機技術(shù)規(guī)范
- 《寧向東的清華管理學(xué)課》學(xué)習(xí)筆記
- 信訪維穩(wěn)工作培訓(xùn)
- 品牌社群視角下顧客參與價值共創(chuàng)的影響研究-基于小米社群運營案例分析
- 《銀行保險理財沙龍》課件
- 像科學(xué)家一樣思考-怎么做-怎么教-
評論
0/150
提交評論