解二元一次方程組(二)教學(xué)設(shè)計(jì)_第1頁
解二元一次方程組(二)教學(xué)設(shè)計(jì)_第2頁
解二元一次方程組(二)教學(xué)設(shè)計(jì)_第3頁
解二元一次方程組(二)教學(xué)設(shè)計(jì)_第4頁
解二元一次方程組(二)教學(xué)設(shè)計(jì)_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第八章 二元一次方程組的解法(二)教學(xué)設(shè)計(jì)一、學(xué)生起點(diǎn)分析在學(xué)習(xí)本節(jié)之前,學(xué)生已經(jīng)掌握了有理數(shù)、整式的運(yùn)算、一元一次方程等知識,了解了二元一次方程、二元一次方程組等基本概念,具備了進(jìn)一步學(xué)習(xí)二元一次方程組的解法的基本能力.二、教學(xué)任務(wù)分析二元一次方程組的解法是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書 七年級(下)第八章二元一次方程組的第二節(jié)(兩課時).第1課時,讓學(xué)生學(xué)習(xí)了二元一次方程組的解法代入消元法.本節(jié)課為第2課時,學(xué)習(xí)二元一次方程組的另一解法加減消元法.加減消元法也是解二元一次方程組的基本方法之一,它要求兩個方程中必須有某一個未知數(shù)的系數(shù)的絕對值相等(或利用等式的基本性質(zhì)在方程兩邊同時乘以一

2、個適當(dāng)?shù)牟粸?的數(shù),使兩個方程中某一個未知數(shù)的系數(shù)的絕對值相等),然后利用等式的基本性質(zhì)在方程兩邊同時相加或相減消元.三、教學(xué)目標(biāo)分析1.教學(xué)目標(biāo)1會用加減消元法解二元一次方程組.2.讓學(xué)生在自主探索和合作交流中,進(jìn)一步理解二元一次方程組的“消元”思想,初步體會數(shù)學(xué)研究中“化未知為已知”的化歸思想.3.通過對具體的二元一次方程組的觀察、分析,選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析能力.4通過學(xué)生比較兩種解法的差別與聯(lián)系,體會透過現(xiàn)象抓住事物的本質(zhì)這一認(rèn)識方法.2.教學(xué)重點(diǎn)用加減消元法解二元一次方程組.3.教學(xué)難點(diǎn)在解題過程中進(jìn)一步體會“消元”思想和“化未知為已知”的化歸思想.四、

3、教學(xué)過程設(shè)計(jì)本節(jié)課設(shè)計(jì)了五個教學(xué)環(huán)節(jié):第一環(huán)節(jié):情境引入;第二環(huán)節(jié):講授新知;第三環(huán)節(jié):鞏固新知;第四環(huán)節(jié):課堂小結(jié);第五環(huán)節(jié):布置作業(yè).第一環(huán)節(jié):情境引入內(nèi)容:鞏固練習(xí),在練習(xí)中發(fā)現(xiàn)新的解決方法怎樣解下面的二元一次方程組呢?(學(xué)生在練習(xí)本上做,教師巡視、引導(dǎo)、解疑,注意發(fā)現(xiàn)學(xué)生在解答過程中出現(xiàn)的新的想法,可以讓用不同方法解題的學(xué)生將他們的方法板演在黑板上,完后進(jìn)行評析,并為加減消元法的出現(xiàn)鋪路.)學(xué)生可能的解答方案1:解1:把變形,得:, 把代入,得:,解得:.把代入,得:.所以方程組的解為.學(xué)生可能的解答方案2:解2:由得, 把當(dāng)做整體將代入,得:,解得:.把代入,得:.所以方程組的解為.

4、(此種解法體現(xiàn)了整體的思想)學(xué)生可能的解答方案3:解3:根據(jù)等式的基本性質(zhì)方程+方程得:,解得:,把代入,解得:,所以方程組的解為.通過上面的練習(xí)發(fā)現(xiàn),同學(xué)們對代入消元法都掌握得很好了,基本上都能夠按要求解出二元一次方程組的解(如方案1),可是也有同學(xué)發(fā)現(xiàn)(方案2)的解法比(方案1)的解法簡單,他是將5y作為一個整體代入消元,依然體現(xiàn)了代入法的核心是代入“消元”,通過“消元”,使“二元”轉(zhuǎn)化為“一元”,從而使問題得以解決,那么(方案3)的解法又如何?它達(dá)到“消元”的目的了嗎? (留些時間給學(xué)生觀察,注意引導(dǎo)學(xué)生觀察方程中某一未知數(shù)的系數(shù),如x的系數(shù)或y的系數(shù))引導(dǎo)學(xué)生發(fā)現(xiàn)方程和中的5y和5y互

5、為相反數(shù),根據(jù)相反數(shù)的和為零(方案3)將方程和的左右兩邊相加,然后根據(jù)等式的基本性質(zhì)消去了未知數(shù)y,得到了一個關(guān)于x的一元一次方程,從而實(shí)現(xiàn)了化“二元”為“一元”的目的.這就是我們這節(jié)課要學(xué)習(xí)的二元一次方程組的解法中的第二種方法加減消元法.意圖:在練習(xí)的過程中學(xué)會思考、分析,通過思考自然地得出我們要研究和解決的問題.效果:通過學(xué)生練習(xí)、對比、討論,既鞏固了已學(xué)的用代入法解二元一次方程組的知識,又在此過程中發(fā)現(xiàn)了新的解二元一次方程組的方法加減消元法.說明:如果班機(jī)學(xué)生不能發(fā)現(xiàn)方法3,教師可以適當(dāng)引導(dǎo),如在方法二中,我們直接解出5y,代入另一式子從而消去一個未知數(shù),是否可以不解出直接消去這個未知數(shù)

6、呢,兩個式子中y 的系數(shù)有什么關(guān)系?能否通過等式加減直接消去這個未知數(shù)呢?第二環(huán)節(jié):講授新知內(nèi)容1:(教師板書課題)下面我們就用剛才的方法解下面的二元一次方程組(教師規(guī)范表達(dá)解答過程,作出示范)例 解下列二元一次方程組分析:觀察到方程、中未知數(shù)x的系數(shù)相等,可以利用兩個方程相減消去未知數(shù)x.解:-,得:, 解得:,把代入,得:,解得:,所以方程組的解為. (解答完本題后,口算檢驗(yàn),讓學(xué)生養(yǎng)成進(jìn)行檢驗(yàn)的習(xí)慣,同時教師需強(qiáng)調(diào)以下兩點(diǎn) (1)注意解此題的易錯點(diǎn)是-時是(2x+3y)-(2x-5y)=-1-7,方程左邊去括號時注意符號.另外解題時,-或-都可以消去未知數(shù)x,不過在-得到的方程中,y的系

7、數(shù)是負(fù)數(shù),所以在上面的解法中選擇-;(2)把y-1代入或,最后結(jié)果是一樣的,但我們通常的作法是將所求出的一個未知數(shù)的值代入系數(shù)較簡單的方程中求出另一個未知數(shù)的值.師生一起分析上面的解答過程,歸納出下面的一些規(guī)律:在方程組的兩個方程中,若某個未知數(shù)的系數(shù)是相反數(shù),則可直接把這兩個方程的兩邊分別相加,消去這個未知數(shù);若某個未知數(shù)的系數(shù)相等,可直接把這兩個方程的兩邊分別相減,消去這個未知數(shù)得到一個一元一次方程,從而求出它的解,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法)內(nèi)容2:鞏固練習(xí)師生共析(先留一定的時間讓學(xué)生觀察此方程組,讓學(xué)生說明自己觀察到方程有什么特點(diǎn),能不能自己解決此方程組,用

8、什么方法解決?如學(xué)生提出用代入消元法,可以讓學(xué)生先按此法完成,然后再問能不能用剛學(xué)過的加減消元法解決?讓學(xué)生討論嘗試,學(xué)生可能得到的結(jié)論如下)1.對于用加減消元法解,x、y的系數(shù)既不相同也不是相反數(shù),沒有辦法用加減消元法.2.是不是可以這樣想,將方程組中的方程用等式的基本性質(zhì)將這個方程組中的x或y的系數(shù)化成相等(或互為相反數(shù))的情形,再用加減消元法,達(dá)到消元的目的.3.只要在方程和方程的兩邊分別除以2和3,x的系數(shù)不就變成“1”了嗎?這樣就可以用加減消元法了.4.不同意3的做法.如果這樣做,是可以解決這一問題,但y的系數(shù)和常數(shù)項(xiàng)都變成了分?jǐn)?shù),這樣解是不是變麻煩了嗎?那還不如用代入消元法了.不如

9、找x的系數(shù)2和3的最小公倍數(shù)6,在方程兩邊同乘以3,得,在方程兩邊同乘以2,得,然后-,就可以將x消去,得,把代入得,.所以方程組的解為(在引導(dǎo)的過程中,肯定學(xué)生的好的想法.)其實(shí)在我們學(xué)習(xí)數(shù)學(xué)的過程中,二元一次方程組中未知數(shù)的系數(shù)不一定剛好是1或-1,或同一個未知數(shù)的系數(shù)剛好相同或相反.我們遇到的往往就是這樣的方程組,我們要想比較簡捷地把它解出來,就需要轉(zhuǎn)化為同一個未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達(dá)到消元的目的.請大家把解答過程寫出來.解:×3,得:, ×2,得:, ,得:.將代入,得:.所以原方程組的解是.內(nèi)容3:議一議根據(jù)上面幾個方程組的解法,請同學(xué)們思

10、考下面兩個問題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學(xué)生分組討論、總結(jié)并請學(xué)生代表發(fā)言)師生共析(1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:變形-找出兩個方程中同一個未知數(shù)系數(shù)的絕對值的最小公倍數(shù),然后分別在兩個方程的兩邊乘以適當(dāng)?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù)加減消元,得到一個一元一次方程.解一元一次方程把求出的未知數(shù)的解代入原方程組中的任一方程,求出另一個未知數(shù)的值,從而得方程組的解注意:對于較復(fù)雜的二元一次方程組,應(yīng)先化簡(去分母,去括號,合并同類項(xiàng)

11、等).通常要把每個方程整理成含未知數(shù)的項(xiàng)在方程的左邊,常數(shù)項(xiàng)在方程右邊的形式,再作如上加減消元的考慮.意圖:使學(xué)生明確使用加減法的條件,體會在某些條件下使用加減法的優(yōu)越性效果:通過本環(huán)節(jié)的學(xué)習(xí),加深和鞏固了學(xué)生對加減消元法的認(rèn)識.第三環(huán)節(jié):鞏固新知內(nèi)容:回憶上一節(jié)的練習(xí)和習(xí)題,看哪些題用代入消元法解起來比較簡單?哪些題我們用加減消元法簡單?我們分組討論,并派一個代表闡述自己的意見,試說明兩種解方程組的方法的共同特點(diǎn)和各自的優(yōu)勢.1.關(guān)于二元一次方程組的兩種解法:代入消元法和加減消元法,通過比較,我們發(fā)現(xiàn)其實(shí)質(zhì)都是消元,即通過消去一個未知數(shù),化“二元”為“一元”.2.只有當(dāng)方程組的某一方程中某一

12、未知數(shù)的系數(shù)的絕對值是1時,用代入消元法較簡單,其他的用加減消元法較簡單. 完成課本隨堂練習(xí)補(bǔ)充練習(xí):求:二元一次方程組的解.,求x,y的值.意圖:通過練習(xí),使學(xué)生熟練地用加減法解二元一次方程組并能在練習(xí)中摸索運(yùn)算技巧,培養(yǎng)能力效果:通過本環(huán)節(jié)的練習(xí),學(xué)生能夠較熟練地運(yùn)用加減法解二元一次方程組.第四環(huán)節(jié):課堂小結(jié)內(nèi)容:1.關(guān)于二元一次方程組的兩種解法:代入消元法和加減消元法.比較這兩種解法我們發(fā)現(xiàn)其實(shí)質(zhì)都是消元,即通過消去一個未知數(shù),化“二元”為“一元”.2. 用加減消元法解方程組的條件:某一未知數(shù)的系數(shù)的絕對值相等3. 用加減法解二元一次方程組的步驟:變形,使某個未知數(shù)的系數(shù)絕對值相等加減消元解一元一次方程求另一個未知數(shù)的值,得方程組的解意圖:鞏固和加深對化歸思想的理解和運(yùn)用.效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識.第五環(huán)節(jié):布置作業(yè)1.課本習(xí)題7.32.閱讀讀一讀·你知道計(jì)算機(jī)是如何解方程組嗎.五、教學(xué)設(shè)計(jì)反思本節(jié)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論