高中數(shù)學(xué)33《直線的交點(diǎn)坐標(biāo)與距離公式》教案新人教必修(共9頁)_第1頁
高中數(shù)學(xué)33《直線的交點(diǎn)坐標(biāo)與距離公式》教案新人教必修(共9頁)_第2頁
高中數(shù)學(xué)33《直線的交點(diǎn)坐標(biāo)與距離公式》教案新人教必修(共9頁)_第3頁
高中數(shù)學(xué)33《直線的交點(diǎn)坐標(biāo)與距離公式》教案新人教必修(共9頁)_第4頁
高中數(shù)學(xué)33《直線的交點(diǎn)坐標(biāo)與距離公式》教案新人教必修(共9頁)_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上l 3.3-1兩直線的交點(diǎn)坐標(biāo)三維目標(biāo)知識與技能:1。直線和直線的交點(diǎn) 2二元一次方程組的解過程和方法:1。學(xué)習(xí)兩直線交點(diǎn)坐標(biāo)的求法,以及判斷兩直線位置的方法。 2掌握數(shù)形結(jié)合的學(xué)習(xí)法。 3組成學(xué)習(xí)小組,分別對直線和直線的位置進(jìn)行判斷,歸納過定點(diǎn)的 直線系方程。情態(tài)和價值:1。通過兩直線交點(diǎn)和二元一次方程組的聯(lián)系,從而認(rèn)識事物之間的內(nèi) 的聯(lián)系。 2能夠用辯證的觀點(diǎn)看問題。教學(xué)重點(diǎn),難點(diǎn)重點(diǎn):判斷兩直線是否相交,求交點(diǎn)坐標(biāo)。難點(diǎn):兩直線相交與二元一次方程的關(guān)系。教學(xué)方法:啟發(fā)引導(dǎo)式 在學(xué)生認(rèn)識直線方程的基礎(chǔ)上,啟發(fā)學(xué)生理解兩直線交點(diǎn)與二元一次方程組的的相互關(guān)系。引導(dǎo)學(xué)生

2、將兩直線交點(diǎn)的求解問題轉(zhuǎn)化為相應(yīng)的直線方程構(gòu)成的二元一次方程組解的問題。由此體會“形”的問題由“數(shù)”的運(yùn)算來解決。教具:用POWERPOINT課件的輔助式教學(xué)教學(xué)過程:一 情境設(shè)置,導(dǎo)入新課用大屏幕打出直角坐標(biāo)系中兩直線,移動直線,讓學(xué)生觀察這兩直線的位置關(guān)系。課堂設(shè)問一:由直線方程的概念,我們知道直線上的一點(diǎn)與二元一次方程的解的關(guān)系,那如果兩直線相交于一點(diǎn),這一點(diǎn)與這兩條直線的方程有何關(guān)系?二 講授新課1 分析任務(wù),分組討論,判斷兩直線的位置關(guān)系已知兩直線L1:A1x+B1y +C1=0,L2:A2x+B2y+C2=0如何判斷這兩條直線的關(guān)系? 教師引導(dǎo)學(xué)生先從點(diǎn)與直線的位置關(guān)系入手,看表一

3、,并填空。 幾何元素及關(guān)系 代數(shù)表示點(diǎn)A A(a,b)直線LL:Ax+By+C=0點(diǎn)A在直線上直線L1與 L2的交點(diǎn)A課堂設(shè)問二:如果兩條直線相交,怎樣求交點(diǎn)坐標(biāo)?交點(diǎn)坐標(biāo)與二元一次方程組有什關(guān)系?學(xué)生進(jìn)行分組討論,教師引導(dǎo)學(xué)生歸納出兩直線是否相交與其方程所組成的方程組有何關(guān)系?(1) 若二元一次方程組有唯一解,L 1與L2 相交。(2) 若二元一次方程組無解,則L 1與 L2平行。(3) 若二元一次方程組有無數(shù)解,則L 1 與L2重合。課后探究:兩直線是否相交與其方程組成的方程組的系數(shù)有何關(guān)系?2 例題講解,規(guī)范表示,解決問題例題1:求下列兩直線交點(diǎn)坐標(biāo)L1 :3x+4y-2=0L1:2x+

4、y +2=0 解:解方程組 得 x=-2,y=2所以L1與L2的交點(diǎn)坐標(biāo)為M(-2,2),如圖3。3。1。教師可以讓學(xué)生自己動手解方程組,看解題是否規(guī)范,條理是否清楚,表達(dá)是否簡潔,然后才進(jìn)行講解。同類練習(xí):書本110頁第1,2題。例2 判斷下列各對直線的位置關(guān)系。如果相交,求出交點(diǎn)坐標(biāo)。(1) L1:x-y=0,L2:3x+3y-10=0(2) L1:3x-y=0,L2:6x-2y=0(3) L1:3x+4y-5=0,L2:6x+8y-10=0 這道題可以作為練習(xí)以鞏固判斷兩直線位置關(guān)系。三 啟發(fā)拓展,靈活應(yīng)用。課堂設(shè)問一。當(dāng)變化時,方程 3x+4y-2+(2x+y+2)=0表示何圖形,圖形

5、有何特點(diǎn)?求出圖形的交點(diǎn)坐標(biāo)。(1) 可以一用信息技術(shù),當(dāng) 取不同值時,通過各種圖形,經(jīng)過觀察,讓學(xué)生從直觀上得出結(jié)論,同時發(fā)現(xiàn)這些直線的共同特點(diǎn)是經(jīng)過同一點(diǎn)。(2) 找出或猜想這個點(diǎn)的坐標(biāo),代入方程,得出結(jié)論。(3) 結(jié)論,方程表示經(jīng)過這兩條直線L1 與L2的交點(diǎn)的直線的集合。 例2 已知為實(shí)數(shù),兩直線:,:相交于一點(diǎn),求證交點(diǎn)不可能在第一象限及軸上.分析:先通過聯(lián)立方程組將交點(diǎn)坐標(biāo)解出,再判斷交點(diǎn)橫縱坐標(biāo)的范圍.解:解方程組若0,則1.當(dāng)1時,0,此時交點(diǎn)在第二象限內(nèi).又因?yàn)闉槿我鈱?shí)數(shù)時,都有10,故0因?yàn)?(否則兩直線平行,無交點(diǎn)) ,所以,交點(diǎn)不可能在軸上,得交點(diǎn)()四 小結(jié):直線與直

6、線的位置關(guān)系,求兩直線的交點(diǎn)坐標(biāo),能將幾何問題轉(zhuǎn)化為代數(shù)問題來解決,并能進(jìn)行應(yīng)用。五 練習(xí)及作業(yè):1 光線從M(-2,3)射到x軸上的一點(diǎn)P(1,0)后被x軸反射,求反射光線所在的直線方程。2 求滿足下列條件的直線方程。經(jīng)過兩直線2x-3y+10=0與3x+4y-2=0的交點(diǎn),且和直線3x-2y+4=0垂直。板書設(shè)計(jì):略3.3.。2直線與直線之間的位置關(guān)系-兩點(diǎn)間距離三維目標(biāo)知識與技能:掌握直角坐標(biāo)系兩點(diǎn)間距離,用坐標(biāo)法證明簡單的幾何問題。過程和方法:通過兩點(diǎn)間距離公式的推導(dǎo),能更充分體會數(shù)形結(jié)合的優(yōu)越性。 情態(tài)和價值:體會事物之間的內(nèi)在聯(lián)系,能用代數(shù)方法解決幾何問題教學(xué)重點(diǎn),難點(diǎn):重點(diǎn),兩點(diǎn)

7、間距離公式的推導(dǎo)。難點(diǎn),應(yīng)用兩點(diǎn)間距離公式證明幾何問題。教學(xué)方式:啟發(fā)引導(dǎo)式。教學(xué)用具:用多媒體輔助教學(xué)。教學(xué)過程:一, 情境設(shè)置,導(dǎo)入新課課堂設(shè)問一:回憶數(shù)軸上兩點(diǎn)間的距離公式,同學(xué)們能否用以前所學(xué)的知識來解決以下問題平面直角坐標(biāo)系中兩點(diǎn),分別向x軸和y軸作垂線,垂足分別為直線相交于點(diǎn)Q。在直角中,為了計(jì)算其長度,過點(diǎn)向x軸作垂線,垂足為 過點(diǎn) 向y軸作垂線,垂足為 ,于是有所以,=。由此得到兩點(diǎn)間的距離公式在教學(xué)過程中,可以提出問題讓學(xué)生自己思考,教師提示,根據(jù)勾股定理,不難得到。二,例題解答,細(xì)心演算,規(guī)范表達(dá)。例1 :以知點(diǎn)A(-1,2),B(2, ),在x軸上求一點(diǎn),使 ,并求 的值

8、。解:設(shè)所求點(diǎn)P(x,0),于是有由 得解得 x=1。所以,所求點(diǎn)P(1,0)且 通過例題,使學(xué)生對兩點(diǎn)間距離公式理解。應(yīng)用。解法二:由已知得,線段AB的中點(diǎn)為,直線AB的斜率為k=線段AB的垂直平分線的方程是 y-在上述式子中,令y=0,解得x=1。所以所求點(diǎn)P的坐標(biāo)為(1,0)。因此同步練習(xí):書本112頁第1,2 題三 鞏固反思,靈活應(yīng)用。(用兩點(diǎn)間距離公式來證明幾何問題。)例2 證明平行四邊行四條邊的平方和等于兩條對角線的平方和。分析:首先要建立直角坐標(biāo)系,用坐標(biāo)表示有關(guān)量,然后用代數(shù)進(jìn)行運(yùn)算,最后把代數(shù)運(yùn)算“翻譯”成幾何關(guān)系。這一道題可以讓學(xué)生討論解決,讓學(xué)生深刻體會數(shù)形之間的關(guān)系和轉(zhuǎn)

9、化,并從中歸納出應(yīng)用代數(shù)問題解決幾何問題的基本步驟。 證明:如圖所示,以頂點(diǎn)為坐標(biāo)原點(diǎn),邊所在的直線為軸,建立直角坐標(biāo)系,有(,)。設(shè)(,),(,),由平行四邊形的性質(zhì)的點(diǎn)的坐標(biāo)為(,),因?yàn)樗裕?,因此,平行四邊形四條邊的平方和等于兩條對角線的平方和。上述解決問題的基本步驟可以讓學(xué)生歸納如下:第一步:建立直角坐標(biāo)系,用坐標(biāo)表示有關(guān)的量。第二步:進(jìn)行有關(guān)代數(shù)運(yùn)算。第三步;把代數(shù)結(jié)果“翻譯”成幾何關(guān)系。思考:同學(xué)們是否還有其它的解決辦法?還可用綜合幾何的方法證明這道題。課堂小結(jié):主要講述了兩點(diǎn)間距離公式的推導(dǎo),以及應(yīng)用,要懂得用代數(shù)的方法解決幾何問題,建立直角坐標(biāo)系的重要性。課后練習(xí)1.:證

10、明直角三角形斜邊上的中點(diǎn)到三個頂點(diǎn)的距離相等2.在直線x-3y-2=0上求兩點(diǎn),使它與(-2,2)構(gòu)成一個等邊三角形。3(1994全國高考)點(diǎn)(0,5)到直線y=2x的距離是。板書設(shè)計(jì):略。 333兩條直線的位置關(guān)系點(diǎn)到直線的距離公式三維目標(biāo):知識與技能:1. 理解點(diǎn)到直線距離公式的推導(dǎo),熟練掌握點(diǎn)到直線的距離公式;能力和方法: 會用點(diǎn)到直線距離公式求解兩平行線距離情感和價值:1。 認(rèn)識事物之間在一定條件下的轉(zhuǎn)化。用聯(lián)系的觀點(diǎn)看問題教學(xué)重點(diǎn):點(diǎn)到直線的距離公式教學(xué)難點(diǎn):點(diǎn)到直線距離公式的理解與應(yīng)用.教學(xué)方法:學(xué)導(dǎo)式教 具:多媒體、實(shí)物投影儀教學(xué)過程  一、情境設(shè)置,導(dǎo)入新課

11、:前面幾節(jié)課,我們一起研究學(xué)習(xí)了兩直線的平行或垂直的充要條件,兩直線的夾角公式,兩直線的交點(diǎn)問題,兩點(diǎn)間的距離公式。逐步熟悉了利用代數(shù)方法研究幾何問題的思想方法.這一節(jié),我們將研究怎樣由點(diǎn)的坐標(biāo)和直線的方程直接求點(diǎn)P到直線的距離。 用POWERPOINT打出平面直角坐標(biāo)系中兩直線,進(jìn)行移動,使學(xué)生回顧兩直線的位置關(guān)系,且在直線上取兩點(diǎn),讓學(xué)生指出兩點(diǎn)間的距離公式,復(fù)習(xí)前面所學(xué)。要求學(xué)生思考一直線上的計(jì)算?能否用兩點(diǎn)間距離公式進(jìn)行推導(dǎo)?兩條直線方程如下:. 二、講解新課:1點(diǎn)到直線距離公式:點(diǎn)到直線的距離為: (1)提出問題在平面直角坐標(biāo)系中,如果已知某點(diǎn)P的坐標(biāo)為,直線0或B0時,以上公式,怎

12、樣用點(diǎn)的坐標(biāo)和直線的方程直接求點(diǎn)P到直線的距離呢?學(xué)生可自由討論。(2)數(shù)行結(jié)合,分析問題,提出解決方案學(xué)生已有了點(diǎn)到直線的距離的概念,即由點(diǎn)P到直線的距離d是點(diǎn)P到直線的垂線段的長.這里體現(xiàn)了“畫歸”思想方法,把一個新問題轉(zhuǎn)化為 一個曾今解決過的問題,一個自己熟悉的問題。畫出圖形,分析任務(wù),理清思路,解決問題。方案一:設(shè)點(diǎn)P到直線的垂線段為PQ,垂足為Q,由PQ可知,直線PQ的斜率為(A0),根據(jù)點(diǎn)斜式寫出直線PQ的方程,并由與PQ的方程求出點(diǎn)Q的坐標(biāo);由此根據(jù)兩點(diǎn)距離公式求出PQ,得到點(diǎn)P到直線的距離為d 此方法雖思路自然,但運(yùn)算較繁.下面我們探討別一種方法方案二:設(shè)A0,B0,這時與軸、

13、軸都相交,過點(diǎn)P作軸的平行線,交于點(diǎn);作軸的平行線,交于點(diǎn),由得.所以,PPSS×由三角形面積公式可知:·SP·PS所以可證明,當(dāng)A=0時仍適用這個過程比較繁瑣,但同時也使學(xué)生在知識,能力。意志品質(zhì)等方面得到了提高。3例題應(yīng)用,解決問題。例1 求點(diǎn)P=(-1,2)到直線 3x=2的距離。解:d=例2 已知點(diǎn)A(1,3),B(3,1),C(-1,0),求三角形ABC的面積。解:設(shè)AB邊上的高為h,則S= ,AB邊上的高h(yuǎn)就是點(diǎn)C到AB的距離。AB邊所在直線方程為即x+y-4=0。點(diǎn)C到X+Y-4=0的距離為hh=,因此,S=通過這兩道簡單的例題,使學(xué)生能夠進(jìn)一步對點(diǎn)到直線的距離理解應(yīng)用,能逐步體會用代數(shù)運(yùn)算解決幾何問題的優(yōu)越性。同步練習(xí):114頁第1,2題。4拓展延伸,評價反思。(1) 應(yīng)用推導(dǎo)兩平行線間的距離公式已知兩條平行線直線和的一般式方程為:,:,則與的距離為證明:設(shè)是直線上任一點(diǎn),則點(diǎn)P0到直線的距離為又 即,d 的距離.解法一:在直線上取一點(diǎn)P(,0),因?yàn)?例3 求兩平行線:,:,所以點(diǎn)P到的距離等于與的距離.于是解法二:又.由兩平行線間的距離公式得 四、課堂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論