考研高數(shù)概率線代公式_第1頁
考研高數(shù)概率線代公式_第2頁
考研高數(shù)概率線代公式_第3頁
考研高數(shù)概率線代公式_第4頁
考研高數(shù)概率線代公式_第5頁
已閱讀5頁,還剩48頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高等數(shù)學(xué)部分公式導(dǎo)數(shù)公式:基本積分表:三角函數(shù)的有理式積分:一些初等函數(shù): 兩個重要極限:三角函數(shù)公式:·誘導(dǎo)公式: 函數(shù)角Asincostgctg-sincos-tg-ctg90°-cossinctgtg90°+cos-sin-ctg-tg180°-sin-cos-tg-ctg180°+-sin-costgctg270°-cos-sinctgtg270°+-cossin-ctg-tg360°-sincos-tg-ctg360°+sincostgctg·和差角公式: ·和差化積公式:&

2、#183;倍角公式:·半角公式:·正弦定理: ·余弦定理: ·反三角函數(shù)性質(zhì):高階導(dǎo)數(shù)公式萊布尼茲(Leibniz)公式:中值定理與導(dǎo)數(shù)應(yīng)用:曲率:定積分的近似計算:定積分應(yīng)用相關(guān)公式:空間解析幾何和向量代數(shù):多元函數(shù)微分法及應(yīng)用微分法在幾何上的應(yīng)用:方向?qū)?shù)與梯度:多元函數(shù)的極值及其求法:重積分及其應(yīng)用:柱面坐標和球面坐標:曲線積分:曲面積分:高斯公式:斯托克斯公式曲線積分與曲面積分的關(guān)系:常數(shù)項級數(shù):級數(shù)審斂法:絕對收斂與條件收斂:冪級數(shù):函數(shù)展開成冪級數(shù):一些函數(shù)展開成冪級數(shù):歐拉公式:三角級數(shù):傅立葉級數(shù):周期為的周期函數(shù)的傅立葉級數(shù):微分方程的

3、相關(guān)概念:一階線性微分方程:全微分方程:二階微分方程:二階常系數(shù)齊次線性微分方程及其解法:(*)式的通解兩個不相等實根兩個相等實根一對共軛復(fù)根二階常系數(shù)非齊次線性微分方程概率論部分第一節(jié) 基本概念1、概念網(wǎng)絡(luò)圖2、重要公式和結(jié)論(1)排列組合公式 從m個人中挑出n個人進行排列的可能數(shù)。 從m個人中挑出n個人進行組合的可能數(shù)。(2)加法和乘法原理加法原理(兩種方法均能完成此事):m+n某件事由兩種方法來完成,第一種方法可由m種方法完成,第二種方法可由n種方法來完成,則這件事可由m+n 種方法來完成。乘法原理(兩個步驟分別不能完成這件事):m×n某件事由兩個步驟來完成,第一個步驟可由m種

4、方法完成,第二個步驟可由n 種方法來完成,則這件事可由m×n 種方法來完成。(3)一些常見排列重復(fù)排列和非重復(fù)排列(有序)對立事件(至少有一個)順序問題 (4)隨機試驗和隨機事件如果一個試驗在相同條件下可以重復(fù)進行,而每次試驗的可能結(jié)果不止一個,但在進行一次試驗之前卻不能斷言它出現(xiàn)哪個結(jié)果,則稱這種試驗為隨機試驗。試驗的可能結(jié)果稱為隨機事件。(5)基本事件、樣本空間和事件在一個試驗下,不管事件有多少個,總可以從其中找出這樣一組事件,它具有如下性質(zhì):每進行一次試驗,必須發(fā)生且只能發(fā)生這一組中的一個事件;任何事件,都是由這一組中的部分事件組成的。這樣一組事件中的每一個事件稱為基本事件,用

5、來表示?;臼录娜w,稱為試驗的樣本空間,用表示。一個事件就是由中的部分點(基本事件)組成的集合。通常用大寫字母A,B,C,表示事件,它們是的子集。為必然事件,Ø為不可能事件。不可能事件(Ø)的概率為零,而概率為零的事件不一定是不可能事件;同理,必然事件()的概率為1,而概率為1的事件也不一定是必然事件。(6)事件的關(guān)系與運算關(guān)系:如果事件A的組成部分也是事件B的組成部分,(A發(fā)生必有事件B發(fā)生):如果同時有,則稱事件A與事件B等價,或稱A等于B:A=B。A、B中至少有一個發(fā)生的事件:AB,或者A+B。屬于A而不屬于B的部分所構(gòu)成的事件,稱為A與B的差,記為A-B,也可表

6、示為A-AB或者,它表示A發(fā)生而B不發(fā)生的事件。A、B同時發(fā)生:AB,或者AB。AB=Ø,則表示A與B不可能同時發(fā)生,稱事件A與事件B互不相容或者互斥?;臼录腔ゲ幌嗳莸摹?A稱為事件A的逆事件,或稱A的對立事件,記為。它表示A不發(fā)生的事件?;コ馕幢貙α?。運算: 結(jié)合率:A(BC)=(AB)C A(BC)=(AB)C 分配率:(AB)C=(AC)(BC) (AB)C=(AC)(BC) 德摩根率: ,(7)概率的公理化定義設(shè)為樣本空間,為事件,對每一個事件都有一個實數(shù)P(A),若滿足下列三個條件:1° 0P(A)1, 2° P() =13° 對于兩兩互不

7、相容的事件,有常稱為可列(完全)可加性。則稱P(A)為事件的概率。(8)古典概型1° ,2° 。設(shè)任一事件,它是由組成的,則有P(A)= =(9)幾何概型若隨機試驗的結(jié)果為無限不可數(shù)并且每個結(jié)果出現(xiàn)的可能性均勻,同時樣本空間中的每一個基本事件可以使用一個有界區(qū)域來描述,則稱此隨機試驗為幾何概型。對任一事件A,。其中L為幾何度量(長度、面積、體積)。(10)加法公式P(A+B)=P(A)+P(B)-P(AB)當P(AB)0時,P(A+B)=P(A)+P(B)(11)減法公式P(A-B)=P(A)-P(AB)當BA時,P(A-B)=P(A)-P(B)當A=時,P()=1- P(

8、B)(12)條件概率定義 設(shè)A、B是兩個事件,且P(A)>0,則稱為事件A發(fā)生條件下,事件B發(fā)生的條件概率,記為。條件概率是概率的一種,所有概率的性質(zhì)都適合于條件概率。例如P(/B)=1P(/A)=1-P(B/A)(13)乘法公式乘法公式:更一般地,對事件A1,A2,An,若P(A1A2An-1)>0,則有。(14)獨立性兩個事件的獨立性設(shè)事件、滿足,則稱事件、是相互獨立的。若事件、相互獨立,且,則有若事件、相互獨立,則可得到與、與、與也都相互獨立。必然事件和不可能事件Ø與任何事件都相互獨立。Ø與任何事件都互斥。多個事件的獨立性設(shè)ABC是三個事件,如果滿足兩兩獨

9、立的條件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同時滿足P(ABC)=P(A)P(B)P(C)那么A、B、C相互獨立。對于n個事件類似。(15)全概公式設(shè)事件滿足1°兩兩互不相容,2°,則有。(16)貝葉斯公式設(shè)事件,及滿足1° ,兩兩互不相容,>0,1,2,2° ,則,i=1,2,n。此公式即為貝葉斯公式。,(,),通常叫先驗概率。,(,),通常稱為后驗概率。貝葉斯公式反映了“因果”的概率規(guī)律,并作出了“由果朔因”的推斷。(17)伯努利概型我們作了次試驗,且滿足u 每次試驗只有兩種可能結(jié)果,發(fā)

10、生或不發(fā)生;u 次試驗是重復(fù)進行的,即發(fā)生的概率每次均一樣;u 每次試驗是獨立的,即每次試驗發(fā)生與否與其他次試驗發(fā)生與否是互不影響的。這種試驗稱為伯努利概型,或稱為重伯努利試驗。用表示每次試驗發(fā)生的概率,則發(fā)生的概率為,用表示重伯努利試驗中出現(xiàn)次的概率,。第二節(jié) 重點考核點事件的運算、概率的定義(古典概型和幾何概型)、條件概率和乘法公式、全概和貝葉斯公式、獨立性和伯努利概型第二章 隨機變量及其分布第一節(jié) 基本概念1、概念網(wǎng)絡(luò)圖 2、重要公式和結(jié)論(1)離散型隨機變量的分布律設(shè)離散型隨機變量的可能取值為Xk(k=1,2,)且取各個值的概率,即事件(X=Xk)的概率為P(X=xk)=pk,k=1,

11、2,,則稱上式為離散型隨機變量的概率分布或分布律。有時也用分布列的形式給出:。顯然分布律應(yīng)滿足下列條件:(1), (2)。(2)連續(xù)型隨機變量的分布密度設(shè)是隨機變量的分布函數(shù),若存在非負函數(shù),對任意實數(shù),有, 則稱為連續(xù)型隨機變量。稱為的概率密度函數(shù)或密度函數(shù),簡稱概率密度。密度函數(shù)具有下面4個性質(zhì):1° 。2° 。(3)離散與連續(xù)型隨機變量的關(guān)系積分元在連續(xù)型隨機變量理論中所起的作用與在離散型隨機變量理論中所起的作用相類似。(4)分布函數(shù)設(shè)為隨機變量,是任意實數(shù),則函數(shù)稱為隨機變量X的分布函數(shù),本質(zhì)上是一個累積函數(shù)。 可以得到X落入?yún)^(qū)間的概率。分布函數(shù)表示隨機變量落入?yún)^(qū)間

12、( ,x內(nèi)的概率。分布函數(shù)具有如下性質(zhì):1° ;2° 是單調(diào)不減的函數(shù),即時,有 ;3° , ;4° ,即是右連續(xù)的;5° 。對于離散型隨機變量,;對于連續(xù)型隨機變量, 。(5)八大分布0-1分布P(X=1)=p, P(X=0)=q二項分布在重貝努里試驗中,設(shè)事件發(fā)生的概率為。事件發(fā)生的次數(shù)是隨機變量,設(shè)為,則可能取值為。, 其中,則稱隨機變量服從參數(shù)為,的二項分布。記為。當時,這就是(0-1)分布,所以(0-1)分布是二項分布的特例。泊松分布設(shè)隨機變量的分布律為,則稱隨機變量服從參數(shù)為的泊松分布,記為或者P()。泊松分布為二項分布的極限分布(

13、np=,n)。超幾何分布隨機變量X服從參數(shù)為n,N,M的超幾何分布,記為H(n,N,M)。幾何分布,其中p0,q=1-p。隨機變量X服從參數(shù)為p的幾何分布,記為G(p)。均勻分布設(shè)隨機變量的值只落在a,b內(nèi),其密度函數(shù)在a,b上為常數(shù),即 axb 其他,則稱隨機變量在a,b上服從均勻分布,記為XU(a,b)。分布函數(shù)為  axb 0, x<a,   1, x>b。 當ax1<x2b時,X落在區(qū)間()內(nèi)的概率為。指數(shù)分布 , 0, ,   其中,則稱隨機變量X服從參數(shù)為的指數(shù)分布。X的分布

14、函數(shù)為 , x<0。    記住積分公式:正態(tài)分布設(shè)隨機變量的密度函數(shù)為, ,其中、為常數(shù),則稱隨機變量服從參數(shù)為、的正態(tài)分布或高斯(Gauss)分布,記為。具有如下性質(zhì):1° 的圖形是關(guān)于對稱的;2° 當時,為最大值;若,則的分布函數(shù)為。參數(shù)、時的正態(tài)分布稱為標準正態(tài)分布,記為,其密度函數(shù)記為,分布函數(shù)為。是不可求積函數(shù),其函數(shù)值,已編制成表可供查用。(-x)1-(x)且(0)。如果,則。 (6)分位數(shù)下分位數(shù):;上分位數(shù):。(7)函數(shù)分布離散型已知的分布列為 ,的分布列(互不相等)如下:,若有某些相等,則應(yīng)將對應(yīng)的相加作為的

15、概率。連續(xù)型先利用X的概率密度fX(x)寫出Y的分布函數(shù)FY(y)P(g(X)y),再利用變上下限積分的求導(dǎo)公式求出fY(y)。第二節(jié) 重點考核點常見分布、函數(shù)分布第三章 二維隨機變量及其分布第一節(jié) 基本概念1、概念網(wǎng)絡(luò)圖2、重要公式和結(jié)論(1)聯(lián)合分布離散型如果二維隨機向量(X,Y)的所有可能取值為至多可列個有序?qū)Γ▁,y),則稱為離散型隨機量。設(shè)=(X,Y)的所有可能取值為,且事件=的概率為pij,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。聯(lián)合分布有時也用下面的概率分布表來表示: YXy1y2yjx1p11p12p1jx2p21p22p2jxipi1這里pij具有下面兩個性質(zhì):(1

16、)pij0(i,j=1,2,);(2)連續(xù)型對于二維隨機向量,如果存在非負函數(shù),使對任意一個其鄰邊分別平行于坐標軸的矩形區(qū)域D,即D=(X,Y)|a<x<b,c<y<d有則稱為連續(xù)型隨機向量;并稱f(x,y)為=(X,Y)的分布密度或稱為X和Y的聯(lián)合分布密度。分布密度f(x,y)具有下面兩個性質(zhì):(1) f(x,y)0;(2) (2)二維隨機變量的本質(zhì)(3)聯(lián)合分布函數(shù)設(shè)(X,Y)為二維隨機變量,對于任意實數(shù)x,y,二元函數(shù)稱為二維隨機向量(X,Y)的分布函數(shù),或稱為隨機變量X和Y的聯(lián)合分布函數(shù)。分布函數(shù)是一個以全平面為其定義域,以事件的概率為函數(shù)值的一個實值函數(shù)。分布

17、函數(shù)F(x,y)具有以下的基本性質(zhì):(1)(2)F(x,y)分別對x和y是非減的,即當x2>x1時,有F(x2,y)F(x1,y);當y2>y1時,有F(x,y2) F(x,y1);(3)F(x,y)分別對x和y是右連續(xù)的,即(4)(5)對于.(4)離散型與連續(xù)型的關(guān)系(5)邊緣分布離散型X的邊緣分布為;Y的邊緣分布為。連續(xù)型X的邊緣分布密度為Y的邊緣分布密度為(6)條件分布離散型在已知X=xi的條件下,Y取值的條件分布為在已知Y=yj的條件下,X取值的條件分布為連續(xù)型在已知Y=y的條件下,X的條件分布密度為;在已知X=x的條件下,Y的條件分布密度為(7)獨立性一般型F(X,Y)=

18、FX(x)FY(y)離散型有零不獨立連續(xù)型f(x,y)=fX(x)fY(y)直接判斷,充要條件:可分離變量正概率密度區(qū)間為矩形二維正態(tài)分布0隨機變量的函數(shù)若X1,X2,Xm,Xm+1,Xn相互獨立, h,g為連續(xù)函數(shù),則:h(X1,X2,Xm)和g(Xm+1,Xn)相互獨立。特例:若X與Y獨立,則:h(X)和g(Y)獨立。例如:若X與Y獨立,則:3X+1和5Y-2獨立。(8)二維均勻分布設(shè)隨機向量(X,Y)的分布密度函數(shù)為其中SD為區(qū)域D的面積,則稱(X,Y)服從D上的均勻分布,記為(X,Y)U(D)。例如圖3.1、圖3.2和圖3.3。y1 D1O 1 x圖3.1yD211 O 2 x圖3.2

19、yD3dcO a b x圖3.3(9)二維正態(tài)分布設(shè)隨機向量(X,Y)的分布密度函數(shù)為其中是5個參數(shù),則稱(X,Y)服從二維正態(tài)分布,記為(X,Y)N(由邊緣密度的計算公式,可以推出二維正態(tài)分布的兩個邊緣分布仍為正態(tài)分布,即XN(但是若XN(,(X,Y)未必是二維正態(tài)分布。(10)函數(shù)分布Z=X+Y根據(jù)定義計算:對于連續(xù)型,fZ(z)兩個獨立的正態(tài)分布的和仍為正態(tài)分布()。n個相互獨立的正態(tài)分布的線性組合,仍服從正態(tài)分布。, Z=max,min(X1,X2,Xn)若相互獨立,其分布函數(shù)分別為,則Z=max,min(X1,X2,Xn)的分布函數(shù)為:分布設(shè)n個隨機變量相互獨立,且服從標準正態(tài)分布,

20、可以證明它們的平方和的分布密度為我們稱隨機變量W服從自由度為n的分布,記為W,其中所謂自由度是指獨立正態(tài)隨機變量的個數(shù),它是隨機變量分布中的一個重要參數(shù)。分布滿足可加性:設(shè)則t分布設(shè)X,Y是兩個相互獨立的隨機變量,且可以證明函數(shù)的概率密度為我們稱隨機變量T服從自由度為t分布,記為Tt(n)。F分布設(shè),且X與Y獨立,可以證明的概率密度函數(shù)為我們稱隨機變量F服從第一個自由度為n1,第二個自由度為n2的F分布,記為Ff(n1, n2).第二節(jié) 重點考核點二維隨機變量聯(lián)合分布函數(shù)、隨機變量的獨立性、簡單函數(shù)的分布第四章 隨機變量的數(shù)字特征第一節(jié) 基本概念1、概念網(wǎng)絡(luò)圖2、重要公式和結(jié)論(1)一維隨機變

21、量的數(shù)字特征離散型連續(xù)型期望期望就是平均值設(shè)是離散型隨機變量,其分布律為,(要求絕對收斂)設(shè)是連續(xù)型隨機變量,其概率密度為,(要求絕對收斂)函數(shù)的期望方差,標準差,矩對于正整數(shù),稱隨機變量的次冪的數(shù)學(xué)期望為的階原點矩,記為,即, 。對于正整數(shù),稱隨機變量與差的次冪的數(shù)學(xué)期望為的階中心矩,記為,即 。對于正整數(shù),稱隨機變量的次冪的數(shù)學(xué)期望為的階原點矩,記為,即 =, 。對于正整數(shù),稱隨機變量與差的次冪的數(shù)學(xué)期望為的階中心矩,記為,即。切比雪夫不等式設(shè)隨機變量具有數(shù)學(xué)期望,方差,則對于任意正數(shù),有下列切比雪夫不等式切比雪夫不等式給出了在未知的分布的情況下,對概率的一種估計,它在理論上有重要意義。(

22、2)期望的性質(zhì)(1); (2)(3),(4),充分條件:和獨立;充要條件:和不相關(guān)。(3)方差的性質(zhì)(1);(2);(3);(4)(5),充分條件:和獨立; 充要條件:和不相關(guān)。 ,無條件成立。 而,無條件成立。(4)常見分布的期望和方 差期望方差分布二項分布泊松分布幾何分布超幾何分布均勻分布指數(shù)分布正態(tài)分布分布分布0(5)二維隨機變量的數(shù)字特征期望函數(shù)的期望方差協(xié)方差對于隨機變量與,稱它們的二階混合中心矩為與的協(xié)方差或相關(guān)矩,記為或,即。與記號相對應(yīng),與的方差與也可分別記為與。相關(guān)系數(shù)對于隨機變量與,如果,則稱 為與的相關(guān)系數(shù),記作(有時可簡記為)。 ,當時,稱與完全相關(guān): 而當時,稱與不相

23、關(guān)。以下五個命題是等價的:;。協(xié)方差矩陣混合矩對于隨機變量與,如果有存在,則稱之為與的階混合原點矩,記為;階混合中心矩記為: (6)協(xié)方差的性質(zhì)(i);(ii);(iii);(iv)。(7)獨立和不相關(guān)(i)若隨機變量與相互獨立,則;反之不真。(ii)若, 則與相互獨立的充要條件是和不相關(guān)。第五章 大數(shù)定律和中心極限定理第一節(jié) 基本概念1、概念網(wǎng)絡(luò)圖2、重要公式和結(jié)論(1)大數(shù)定律切比雪夫大數(shù)定律設(shè)隨機變量X1,X2,相互獨立,均具有有限方差,且被同一常數(shù)C所界:D(Xi)<C(i=1,2,),則對于任意的正數(shù),有特殊情形:若X1,X2,具有相同的數(shù)學(xué)期望E(XI)=,則上式成為伯努利大

24、數(shù)定律設(shè)是n次獨立試驗中事件A發(fā)生的次數(shù),p是事件A在每次試驗中發(fā)生的概率,則對于任意的正數(shù),有伯努利大數(shù)定律說明,當試驗次數(shù)n很大時,事件A發(fā)生的頻率與概率有較大判別的可能性很小,即這就以嚴格的數(shù)學(xué)形式描述了頻率的穩(wěn)定性。辛欽大數(shù)定律設(shè)X1,X2,Xn,是相互獨立同分布的隨機變量序列,且E(Xn)=,則對于任意的正數(shù)有(2)中心極限定理列維林德伯格定理設(shè)隨機變量X1,X2,相互獨立,服從同一分布,且具有相同的數(shù)學(xué)期望和方差:,則隨機變量的分布函數(shù)Fn(x)對任意的實數(shù)x,有此定理也稱為獨立同分布的中心極限定理。棣莫弗拉普拉斯定理設(shè)隨機變量為具有參數(shù)n, p(0<p<1)的二項分布

25、,則對于任意實數(shù)x,有(3)二項定理若當,則超幾何分布的極限分布為二項分布。(4)泊松定理若當,則其中k=0,1,2,n,。二項分布的極限分布為泊松分布。第二節(jié) 重點考核點中心極限定理第六章 數(shù)理統(tǒng)計的基本概念第一節(jié) 基本概念1、概念網(wǎng)絡(luò)圖2、重要公式和結(jié)論(1)數(shù)理統(tǒng)計的基本概念總體在數(shù)理統(tǒng)計中,常把被考察對象的某一個(或多個)指標的全體稱為總體(或母體)。我們總是把總體看成一個具有分布的隨機變量(或隨機向量)。個體總體中的每一個單元稱為樣品(或個體)。樣本我們把從總體中抽取的部分樣品稱為樣本。樣本中所含的樣品數(shù)稱為樣本容量,一般用n表示。在一般情況下,總是把樣本看成是n個相互獨立的且與總體

26、有相同分布的隨機變量,這樣的樣本稱為簡單隨機樣本。在泛指任一次抽取的結(jié)果時,表示n個隨機變量(樣本);在具體的一次抽取之后,表示n個具體的數(shù)值(樣本值)。我們稱之為樣本的兩重性。樣本函數(shù)和統(tǒng)計量設(shè)為總體的一個樣本,稱()為樣本函數(shù),其中為一個連續(xù)函數(shù)。如果中不包含任何未知參數(shù),則稱()為一個統(tǒng)計量。常見統(tǒng)計量及其性質(zhì)樣本均值樣本方差樣本標準差樣本k階原點矩樣本k階中心矩,,其中,為二階中心矩。(2)正態(tài)總體下的四大分布正態(tài)分布設(shè)為來自正態(tài)總體的一個樣本,則樣本函數(shù)t分布設(shè)為來自正態(tài)總體的一個樣本,則樣本函數(shù)其中t(n-1)表示自由度為n-1的t分布。設(shè)為來自正態(tài)總體的一個樣本,則樣本函數(shù)其中表

27、示自由度為n-1的分布。F分布設(shè)為來自正態(tài)總體的一個樣本,而為來自正態(tài)總體的一個樣本,則樣本函數(shù)其中表示第一自由度為,第二自由度為的F分布。(3)正態(tài)總體下分布的性質(zhì)與獨立。例61:從正態(tài)總體中抽取容量為n的樣本,如果要求其樣本均值位于區(qū)間(1.4, 5.4)內(nèi)的概率不小于0.95,問樣本容量n至少應(yīng)取多大?第二節(jié) 重點考核點統(tǒng)計量的分布第七章 參數(shù)估計第一節(jié) 基本概念1、概念網(wǎng)絡(luò)圖2、重要公式和結(jié)論(1)點估計矩估計設(shè)總體X的分布中包含有未知數(shù),則其分布函數(shù)可以表成它的k階原點矩中也包含了未知參數(shù),即。又設(shè)為總體X的n個樣本值,其樣本的k階原點矩為這樣,我們按照“當參數(shù)等于其估計量時,總體矩

28、等于相應(yīng)的樣本矩”的原則建立方程,即有由上面的m個方程中,解出的m個未知參數(shù)即為參數(shù)()的矩估計量。若為的矩估計,為連續(xù)函數(shù),則為的矩估計。極大似然估計當總體X為連續(xù)型隨機變量時,設(shè)其分布密度為,其中為未知參數(shù)。又設(shè)為總體的一個樣本,稱為樣本的似然函數(shù),簡記為Ln.當總體X為離型隨機變量時,設(shè)其分布律為,則稱為樣本的似然函數(shù)。若似然函數(shù)在處取到最大值,則稱分別為的最大似然估計值,相應(yīng)的統(tǒng)計量稱為最大似然估計量。若為的極大似然估計,為單調(diào)函數(shù),則為的極大似然估計。(2)估計量的評選標準無偏性設(shè)為求知參數(shù)的估計量。若E ()=,則稱 為的無偏估計量。E()=E(X), E(S2)=D(X)有效性設(shè)

29、和是未知參數(shù)的兩個無偏估計量。若,則稱有效。一致性設(shè)是的一串估計量,如果對于任意的正數(shù),都有則稱為的一致估計量(或相合估計量)。若為的無偏估計,且則為的一致估計。只要總體的E(X)和D(X)存在,一切樣本矩和樣本矩的連續(xù)函數(shù)都是相應(yīng)總體的一致估計量。(3)區(qū)間估計置信區(qū)間和置信度設(shè)總體X含有一個待估的未知參數(shù)。如果我們從樣本出發(fā),找出兩個統(tǒng)計量與,使得區(qū)間以的概率包含這個待估參數(shù),即那么稱區(qū)間為的置信區(qū)間,為該區(qū)間的置信度(或置信水平)。單正態(tài)總體的期望和方差的區(qū)間估計設(shè)為總體的一個樣本,在置信度為下,我們來確定的置信區(qū)間。具體步驟如下:(i)選擇樣本函數(shù);(ii)由置信度,查表找分位數(shù);(i

30、ii)導(dǎo)出置信區(qū)間。已知方差,估計均值(i)選擇樣本函數(shù)(ii) 查表找分位數(shù)(iii)導(dǎo)出置信區(qū)間未知方差,估計均值(i)選擇樣本函數(shù)(ii)查表找分位數(shù)(iii)導(dǎo)出置信區(qū)間方差的區(qū)間估計(i)選擇樣本函數(shù)(ii)查表找分位數(shù)(iii)導(dǎo)出置信區(qū)間1、行列式1. 行列式共有個元素,展開后有項,可分解為行列式;2. 代數(shù)余子式的性質(zhì):、和的大小無關(guān);、某行(列)的元素乘以其它行(列)元素的代數(shù)余子式為0;、某行(列)的元素乘以該行(列)元素的代數(shù)余子式為;3. 代數(shù)余子式和余子式的關(guān)系:4. 設(shè)行列式:將上、下翻轉(zhuǎn)或左右翻轉(zhuǎn),所得行列式為,則;將順時針或逆時針旋轉(zhuǎn),所得行列式為,則;將主對角

31、線翻轉(zhuǎn)后(轉(zhuǎn)置),所得行列式為,則;將主副角線翻轉(zhuǎn)后,所得行列式為,則;5. 行列式的重要公式:、主對角行列式:主對角元素的乘積;、副對角行列式:副對角元素的乘積;、上、下三角行列式():主對角元素的乘積;、和:副對角元素的乘積;、拉普拉斯展開式:、范德蒙行列式:大指標減小指標的連乘積;、特征值;6. 對于階行列式,恒有:,其中為階主子式;7. 證明的方法:、;、反證法;、構(gòu)造齊次方程組,證明其有非零解;、利用秩,證明;、證明0是其特征值;2、矩陣1. 是階可逆矩陣:(是非奇異矩陣);(是滿秩矩陣)的行(列)向量組線性無關(guān);齊次方程組有非零解;,總有唯一解;與等價;可表示成若干個初等矩陣的乘積

32、;的特征值全不為0;是正定矩陣;的行(列)向量組是的一組基;是中某兩組基的過渡矩陣;2. 對于階矩陣: 無條件恒成立;3.4. 矩陣是表格,推導(dǎo)符號為波浪號或箭頭;行列式是數(shù)值,可求代數(shù)和;5. 關(guān)于分塊矩陣的重要結(jié)論,其中均、可逆:若,則:、;、;、;(主對角分塊)、;(副對角分塊)、;(拉普拉斯)、;(拉普拉斯)3、矩陣的初等變換與線性方程組1. 一個矩陣,總可經(jīng)過初等變換化為標準形,其標準形是唯一確定的:;等價類:所有與等價的矩陣組成的一個集合,稱為一個等價類;標準形為其形狀最簡單的矩陣;對于同型矩陣、,若;2. 行最簡形矩陣:、只能通過初等行變換獲得;、每行首個非0元素必須為1;、每行

33、首個非0元素所在列的其他元素必須為0;3. 初等行變換的應(yīng)用:(初等列變換類似,或轉(zhuǎn)置后采用初等行變換)、 若,則可逆,且;、對矩陣做初等行變化,當變?yōu)闀r,就變成,即:;、求解線形方程組:對于個未知數(shù)個方程,如果,則可逆,且;4. 初等矩陣和對角矩陣的概念:、初等矩陣是行變換還是列變換,由其位置決定:左乘為初等行矩陣、右乘為初等列矩陣;、,左乘矩陣,乘的各行元素;右乘,乘的各列元素; 、對調(diào)兩行或兩列,符號,且,例如:;、倍乘某行或某列,符號,且,例如:;、倍加某行或某列,符號,且,如:;5. 矩陣秩的基本性質(zhì):、;、;、若,則;、若、可逆,則;(可逆矩陣不影響矩陣的秩)、;()、;()、;(

34、)、如果是矩陣,是矩陣,且,則:()、的列向量全部是齊次方程組解(轉(zhuǎn)置運算后的結(jié)論);、若、均為階方陣,則;6. 三種特殊矩陣的方冪:、秩為1的矩陣:一定可以分解為列矩陣(向量)行矩陣(向量)的形式,再采用結(jié)合律;、型如的矩陣:利用二項展開式;二項展開式:;注:、展開后有項;、組合的性質(zhì):;、利用特征值和相似對角化:7. 伴隨矩陣:、伴隨矩陣的秩:;、伴隨矩陣的特征值:;、8. 關(guān)于矩陣秩的描述:、,中有階子式不為0,階子式全部為0;(兩句話)、,中有階子式全部為0;、,中有階子式不為0;9. 線性方程組:,其中為矩陣,則:、與方程的個數(shù)相同,即方程組有個方程;、與方程組得未知數(shù)個數(shù)相同,方程

35、組為元方程;10. 線性方程組的求解:、對增廣矩陣進行初等行變換(只能使用初等行變換);、齊次解為對應(yīng)齊次方程組的解;、特解:自由變量賦初值后求得;11. 由個未知數(shù)個方程的方程組構(gòu)成元線性方程:、;、(向量方程,為矩陣,個方程,個未知數(shù))、(全部按列分塊,其中);、(線性表出)、有解的充要條件:(為未知數(shù)的個數(shù)或維數(shù))4、向量組的線性相關(guān)性1. 個維列向量所組成的向量組:構(gòu)成矩陣;個維行向量所組成的向量組:構(gòu)成矩陣;含有有限個向量的有序向量組與矩陣一一對應(yīng);2. 、向量組的線性相關(guān)、無關(guān)有、無非零解;(齊次線性方程組)、向量的線性表出是否有解;(線性方程組)、向量組的相互線性表示是否有解;(矩陣方程)3. 矩陣與行向量組等價的充分必要條件是:齊次方程組和同解;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論