版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 整理者:辛國(guó)慶 電話股定理的證明【證法1】(課本的證明) 做8個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,再做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們像上圖那樣拼成兩個(gè)正方形.從圖上可以看到,這兩個(gè)正方形的邊長(zhǎng)都是a + b,所以面積相等. 即, 整理得 .【證法2】(鄒元治證明)以a、b 為直角邊,以c為斜邊做四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于. 把這四個(gè)直角三角形拼成如圖所示形狀,使A、E、B三點(diǎn)在一條直線上,B、F、C三
2、點(diǎn)在一條直線上,C、G、D三點(diǎn)在一條直線上. RtHAE RtEBF, AHE = BEF. AEH + AHE = 90º, AEH + BEF = 90º. HEF = 180º90º= 90º. 四邊形EFGH是一個(gè)邊長(zhǎng)為c的正方形. 它的面積等于c2. RtGDH RtHAE, HGD = EHA. HGD + GHD = 90º, EHA + GHD = 90º.又 GHE = 90º, DHA = 90º+ 90º= 180º. ABCD是一個(gè)邊長(zhǎng)為a + b的正方形,它的
3、面積等于. . .【證法3】(趙爽證明)以a、b 為直角邊(b>a), 以c為斜邊作四個(gè)全等的直角三角形,則每個(gè)直角三角形的面積等于. 把這四個(gè)直角三角形拼成如圖所示形狀. RtDAH RtABE, HDA = EAB. HAD + HAD = 90º, EAB + HAD = 90º, ABCD是一個(gè)邊長(zhǎng)為c的正方形,它的面積等于c2. EF = FG =GH =HE = ba ,HEF = 90º. EFGH是一個(gè)邊長(zhǎng)為ba的正方形,它的面積等于. . .【證法4】(1876年美國(guó)總統(tǒng)Garfield證明)以a、b 為直角邊,以c為斜邊作兩個(gè)全等的直角三
4、角形,則每個(gè)直角三角形的面積等于. 把這兩個(gè)直角三角形拼成如圖所示形狀,使A、E、B三點(diǎn)在一條直線上. RtEAD RtCBE, ADE = BEC. AED + ADE = 90º, AED + BEC = 90º. DEC = 180º90º= 90º. DEC是一個(gè)等腰直角三角形,它的面積等于.又 DAE = 90º, EBC = 90º, ADBC. ABCD是一個(gè)直角梯形,它的面積等于. . .【證法5】(梅文鼎證明)做四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b ,斜邊長(zhǎng)為c. 把它們拼成如圖那樣的一個(gè)
5、多邊形,使D、E、F在一條直線上. 過(guò)C作AC的延長(zhǎng)線交DF于點(diǎn)P. D、E、F在一條直線上, 且RtGEF RtEBD, EGF = BED, EGF + GEF = 90°, BED + GEF = 90°, BEG =180º90º= 90º.又 AB = BE = EG = GA = c, ABEG是一個(gè)邊長(zhǎng)為c的正方形. ABC + CBE = 90º. RtABC RtEBD, ABC = EBD. EBD + CBE = 90º. 即 CBD= 90º.又 BDE = 90º,BCP = 9
6、0º,BC = BD = a. BDPC是一個(gè)邊長(zhǎng)為a的正方形.同理,HPFG是一個(gè)邊長(zhǎng)為b的正方形.設(shè)多邊形GHCBE的面積為S,則, . 【證法6】(項(xiàng)明達(dá)證明)做兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b(b>a) ,斜邊長(zhǎng)為c. 再做一個(gè)邊長(zhǎng)為c的正方形. 把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過(guò)點(diǎn)Q作QPBC,交AC于點(diǎn)P. 過(guò)點(diǎn)B作BMPQ,垂足為M;再過(guò)點(diǎn)F作FNPQ,垂足為N. BCA = 90º,QPBC, MPC = 90º, BMPQ, BMP = 90º, BCPM是一個(gè)矩形,即MB
7、C = 90º. QBM + MBA = QBA = 90º,ABC + MBA = MBC = 90º, QBM = ABC,又 BMP = 90º,BCA = 90º,BQ = BA = c, RtBMQ RtBCA.同理可證RtQNF RtAEF.從而將問(wèn)題轉(zhuǎn)化為【證法4】(梅文鼎證明).【證法7】(歐幾里得證明)做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們拼成如圖所示形狀,使H、C、B三點(diǎn)在一條直線上,連結(jié)BF、CD. 過(guò)C作CLDE,交AB于點(diǎn)M,交DE于點(diǎn)L. AF = AC,AB = AD,F(xiàn)AB = GAD, FAB GAD, F
8、AB的面積等于,GAD的面積等于矩形ADLM的面積的一半, 矩形ADLM的面積 =.同理可證,矩形MLEB的面積 =. 正方形ADEB的面積 = 矩形ADLM的面積 + 矩形MLEB的面積 ,即 .【證法8】(利用相似三角形性質(zhì)證明)如圖,在RtABC中,設(shè)直角邊AC、BC的長(zhǎng)度分別為a、b,斜邊AB的長(zhǎng)為c,過(guò)點(diǎn)C作CDAB,垂足是D. 在ADC和ACB中, ADC = ACB = 90º,CAD = BAC, ADC ACB.ADAC = AC AB,即 .同理可證,CDB ACB,從而有 . ,即 .【證法9】(楊作玫證明)做兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、
9、b(b>a),斜邊長(zhǎng)為c. 再做一個(gè)邊長(zhǎng)為c的正方形. 把它們拼成如圖所示的多邊形. 過(guò)A作AFAC,AF交GT于F,AF交DT于R. 過(guò)B作BPAF,垂足為P. 過(guò)D作DE與CB的延長(zhǎng)線垂直,垂足為E,DE交AF于H. BAD = 90º,PAC = 90º, DAH = BAC.又 DHA = 90º,BCA = 90º,AD = AB = c, RtDHA RtBCA. DH = BC = a,AH = AC = b.由作法可知, PBCA 是一個(gè)矩形,所以 RtAPB RtBCA. 即PB = CA = b,AP= a,從而PH = ba.
10、 RtDGT RtBCA ,RtDHA RtBCA. RtDGT RtDHA . DH = DG = a,GDT = HDA . 又 DGT = 90º,DHF = 90º,GDH = GDT + TDH = HDA+ TDH = 90º, DGFH是一個(gè)邊長(zhǎng)為a的正方形. GF = FH = a . TFAF,TF = GTGF = ba . TFPB是一個(gè)直角梯形,上底TF=ba,下底BP= b,高FP=a +(ba).用數(shù)字表示面積的編號(hào)(如圖),則以c為邊長(zhǎng)的正方形的面積為 = , = . 把代入,得= = . . 【證法10】(李銳證明)設(shè)直角
11、三角形兩直角邊的長(zhǎng)分別為a、b(b>a),斜邊的長(zhǎng)為c. 做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們拼成如圖所示形狀,使A、E、G三點(diǎn)在一條直線上. 用數(shù)字表示面積的編號(hào)(如圖). TBE = ABH = 90º, TBH = ABE.又 BTH = BEA = 90º,BT = BE = b, RtHBT RtABE. HT = AE = a. GH = GTHT = ba.又 GHF + BHT = 90º,DBC + BHT = TBH + BHT = 90º, GHF = DBC. DB = EBED = ba,HGF = BDC = 90
12、º, RtHGF RtBDC. 即 .過(guò)Q作QMAG,垂足是M. 由BAQ = BEA = 90º,可知 ABE= QAM,而AB = AQ = c,所以RtABE RtQAM . 又RtHBT RtABE. 所以RtHBT RtQAM . 即 . 由RtABE RtQAM,又得QM = AE = a,AQM = BAE. AQM + FQM = 90º,BAE + CAR = 90º,AQM = BAE, FQM = CAR.又 QMF = ARC = 90º,QM = AR = a, RtQMF RtARC. 即. ,又 , =,即 .
13、160; 【證法11】(利用切割線定理證明)在RtABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c. 如圖,以B為圓心a為半徑作圓,交AB及AB的延長(zhǎng)線分別于D、E,則BD = BE = BC = a. 因?yàn)锽CA = 90º,點(diǎn)C在B上,所以AC是B 的切線. 由切割線定理,得= ,即, . 【證法12】(利用多列米定理證明)在RtABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c(如圖). 過(guò)點(diǎn)A作ADCB,過(guò)點(diǎn)B作BDCA,則ACBD為矩形,矩形ACBD內(nèi)接于一個(gè)圓. 根據(jù)多列米定理,圓內(nèi)接四邊形對(duì)角線的乘積等于兩對(duì)邊乘積之和,有,
14、 AB = DC = c,AD = BC = a,AC = BD = b, ,即 , . 【證法13】(作直角三角形的內(nèi)切圓證明)在RtABC中,設(shè)直角邊BC = a,AC = b,斜邊AB = c. 作RtABC的內(nèi)切圓O,切點(diǎn)分別為D、E、F(如圖),設(shè)O的半徑為r. AE = AF,BF = BD,CD = CE, = = r + r = 2r,即 , . ,即 , , ,又 = = = = , , , , .【證法14】(利用反證法證明)如圖,在RtABC中,設(shè)直角邊AC、BC的長(zhǎng)度分別為a、b,斜邊AB的長(zhǎng)為c,過(guò)點(diǎn)C作CDAB,垂足是D. 假設(shè),即假設(shè) ,則由=可知 ,或
15、者 . 即 AD:ACAC:AB,或者 BD:BCBC:AB.在ADC和ACB中, A = A, 若 AD:ACAC:AB,則ADCACB.在CDB和ACB中, B = B, 若BD:BCBC:AB,則CDBACB.又 ACB = 90º, ADC90º,CDB90º.這與作法CDAB矛盾. 所以,的假設(shè)不能成立. . 【證法15】(辛卜松證明) 設(shè)直角三角形兩直角邊的長(zhǎng)分別為a、b,斜邊的長(zhǎng)為c. 作邊長(zhǎng)是a+b的正方形ABCD. 把正方形ABCD劃分成上方左圖所示的幾個(gè)部分,則正方
16、形ABCD的面積為 ;把正方形ABCD劃分成上方右圖所示的幾個(gè)部分,則正方形ABCD的面積為 =. , . 【證法16】(陳杰證明)設(shè)直角三角形兩直角邊的長(zhǎng)分別為a、b(b>a),斜邊的長(zhǎng)為c. 做兩個(gè)邊長(zhǎng)分別為a、b的正方形(b>a),把它們拼成如圖所示形狀,使E、H、M三點(diǎn)在一條直線上. 用數(shù)字表示面積的編號(hào)(如圖).在EH = b上截取ED = a,連結(jié)DA、DC,則 AD = c. EM = EH + HM = b + a , ED = a, DM = EMED = a = b.又 CMD = 90º,CM = a,AED = 90º, AE = b, RtAED RtDMC. EAD = MDC,DC = AD = c. ADE + ADC+ MDC =180º,ADE + MDC = ADE + EAD = 90º, ADC = 90º.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 訴訟案件處理經(jīng)驗(yàn)總結(jié)
- 房地產(chǎn)開發(fā)業(yè)會(huì)計(jì)工作總結(jié)
- 網(wǎng)上購(gòu)物系統(tǒng)課程設(shè)計(jì)jsp
- 茶葉店銷售員工作總結(jié)
- 工業(yè)行業(yè)保安工作總結(jié)
- 電子商務(wù)行業(yè)行政后勤工作總結(jié)
- 電影影視銷售心得體會(huì)
- 玻璃制品生產(chǎn)招標(biāo)合同三篇
- 勸退員工合同(2篇)
- 創(chuàng)新項(xiàng)目保密協(xié)議書(2篇)
- 2024養(yǎng)老院消防設(shè)備升級(jí)與消防系統(tǒng)維護(hù)服務(wù)合同3篇
- 單位內(nèi)部治安保衛(wèi)制度
- 人才引進(jìn)政策購(gòu)房合同模板
- 學(xué)生宿舍消防安全制度模版(3篇)
- GB/T 44990-2024激光熔覆修復(fù)層界面結(jié)合強(qiáng)度試驗(yàn)方法
- 四川省成都市2023-2024學(xué)年高二上學(xué)期期末調(diào)研考試語(yǔ)文試題(解析版)
- ps經(jīng)典課程-海報(bào)設(shè)計(jì)(第六講)
- 江蘇省泰州市2023-2024學(xué)年高一上學(xué)期期末語(yǔ)文試題及答案
- 【MOOC】工程制圖解讀-西安交通大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 期末復(fù)習(xí)(試題)-2024-2025學(xué)年三年級(jí)上冊(cè)數(shù)學(xué)蘇教版
- 浙江省杭州市西湖區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末語(yǔ)文試題(解析版)
評(píng)論
0/150
提交評(píng)論