




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、精選優(yōu)質文檔-傾情為你奉上2018年河北省石家莊市高考數(shù)學模擬試卷(文科)(3月份)一、選擇題:本大題共12個小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.1 設集合A=x|1x2,B=x|x0,則AB=()Ax|x2Bx|1x0Cx|x02Dx|x12 已知復數(shù)z滿足zi=i+m(mR),若z的虛部為1,則復數(shù)z在復平面內(nèi)對應的點在()A第一象限B第二象限C第三象限D第四象限3 在等比數(shù)列an中,a2=2,a5=16,則a6=()A28B32C64D144 設a0且a1,則“l(fā)ogab1”是“ba”的()A必要不充分條件B充要條件C既不充分也不必要條件D充分
2、不必要條件5 我國魏晉期間的偉大的數(shù)學家劉徽,是最早提出用邏輯推理的方式來論證數(shù)學命題的人,他創(chuàng)立了“割圓術”,得到了著名的“徽率”,即圓周率精確到小數(shù)點后兩位的近似值3.14,如圖就是利用“割圓術”的思想設計的一個程序框圖,則輸出的n值為()(參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305,sin3.75°=0.0654)A24B36C48D126 若兩個非零向量,滿足|+|=|=2|,則向量與的夾角為()ABCD7 已知定義在R上的奇函數(shù)f(x)滿足f(x+5)=f(x),且當時,f(x)=x33x,則f(2018)=()A18B18C2D
3、28 如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線及粗虛線畫出的是某多面體的三視圖,則該多面體的體積為()AB3C8D9 某學校A、B兩個班的數(shù)學興趣小組在一次數(shù)學對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩個班數(shù)學興趣小組成績的平均值及方差A班數(shù)學興趣小組的平均成績高于B班的平均成績B班數(shù)學興趣小組的平均成績高于A班的平均成績A班數(shù)學興趣小組成績的標準差大于B班成績的標準差A班數(shù)學興趣小組成績的標準差小于B班成績的標準差其中正確結論的編號為()ABCD10 已知函數(shù)f(x)=2sin(x+)(0,|)的部分圖象如圖所示,已知點,若將它的圖象向右平移個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(
4、x)的圖象的一條對稱軸方程為()ABCD11 已知F1,F(xiàn)2是雙曲線的兩個焦點,點A是雙曲線的右頂點,M(x0,y0)(x00,y00)是雙曲線的漸近線上一點,滿足MF1MF2,如果以點A為焦點的拋物線y2=2px(p0)經(jīng)過點M,則此雙曲線的離心率為()AB2CD12 已知函數(shù)f(x)=x+ln(ex+1)圖象上三個不同點A,B,C的橫坐標成公差為1的等差數(shù)列,則ABC面積的最大值為()AlnBCD二、填空題(每題5分,滿分20分,將答案填在答題紙上)13 口袋中有形狀和大小完全相同的五個球,編號分別為1,2,3,4,5,若從中一次隨機摸出兩個球,則摸出的兩個球的編號之和大于6的概率為 14
5、 設變量x,y滿足約束條件,則的最大值為 15 已知數(shù)列an的前n項和,如果存在正整數(shù)n,使得(man)(man+1)0成立,則實數(shù)m的取值范圍是 16 正四面體ABCD的棱長為6,其中AB平面,M,N分別是線段AD,BC的中點,以AB為軸旋轉正四面體,且正四面體始終在平面的同側,則線段MN在平面上的射影長的取值范圍是 三、解答題(本大題共7小題,共70分.解答應寫出文字說明、證明過程或演算步驟.)17(12.00分)已知ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,且(1)求角A的大小;(2)設D為AC邊上一點,且BD=5,DC=3,a=7,求c18(12.00分)隨著網(wǎng)絡的發(fā)展,網(wǎng)上購物
6、越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加,下表是某購物網(wǎng)站2017年18月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù):月份12345678促銷費用x2361013211518產(chǎn)品銷量y11233.5544.5(1)根據(jù)數(shù)據(jù)繪制的散點圖能夠看出可用線性回歸模型擬合y與x的關系,請用相關系數(shù)r加以說明;(系數(shù)精確到0.01);(2)建立y關于x的回歸方程(系數(shù)精確到0.01);如果該公司計劃在9月份實現(xiàn)產(chǎn)品銷量超6萬件,預測至少需要投入促銷費用多少萬元(結果精確到0.01)參考數(shù)據(jù):,其中xi,yi分別為第i個月的促銷費用和產(chǎn)品銷量,i=1,2,3,
7、8參考公式:(1)樣本(xi,yi)(i=1,2,n)的相關系數(shù)(2)對于一組數(shù)據(jù)(x1,y1),(x2,y2),(xn,yn),其回歸方程的斜率和截距的最小二乘估計分別為,19(12.00分)如圖,三棱柱ABCA1B1C1中,側面BB1C1C是邊長為2且CBB1=60°的菱形,AB=AC1(1)證明:平面AB1C平面BB1C1C(2)若ABB1C,AB=BC,求點B到平面A1B1C1的距離.20(12.00分)已知圓的圓心C在拋物線x2=2py(p0)上,圓C過原點且與拋物線的準線相切(1)求該拋物線的方程;(2)過拋物線焦點F的直線l交拋物線于A,B兩點,分別在點A,B處作拋物線
8、的兩條切線交于P點,求三角形PAB面積的最小值及此時直線l的方程21(12.00分)已知函數(shù)其中(aR)(1)當a=0時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)若對于任意x0,都有f(x)0恒成立,求a的取值范圍22(10.00分)在直角坐標系xOy中,曲線C1的參數(shù)方程為(其中為參數(shù)),曲線以原點O為極點,x軸的正半軸為極軸建立極坐標系(1)求曲線C1、C2的極坐標方程;(2)射線l:=(0)與曲線C1、C2分別交于點A,B(且A,B均異于原點O)當時,求|OB|2|OA|2的最小值23已知函數(shù)f(x)=|2xa|+|2x+1|(1)當a=1時,求f(x)2的解集;(2)若g(x)=4x2+ax3
9、,當a1,且時,f(x)g(x),求實數(shù)a的取值范圍2018年河北省石家莊市高考數(shù)學模擬試卷(文科)(3月份)參考答案與試題解析一、選擇題:本大題共12個小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.1 設集合A=x|1x2,B=x|x0,則AB=()Ax|x2Bx|1x0Cx|x02Dx|x1【分析】利用并集定義、不等式性質直接求解【解答】解:集合A=x|1x2,B=x|x0,AB=x|x2故選:A【點評】本題考查并集的求法,考查并集定義、不等式性質等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題2 已知復數(shù)z滿足zi=i+m(mR),若z的虛部為
10、1,則復數(shù)z在復平面內(nèi)對應的點在()A第一象限B第二象限C第三象限D第四象限【分析】把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡,求出z在復平面內(nèi)對應點的坐標得答案【解答】解:由zi=i+m,得z=,z的虛部為1,m=1,則z=1+i,復數(shù)z在復平面內(nèi)對應的點的坐標為(1,1),在第一象限故選:A【點評】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,是基礎題3 在等比數(shù)列an中,a2=2,a5=16,則a6=()A28B32C64D14【分析】利用等比數(shù)列的通項公式即可得出【解答】解:設等比數(shù)列an的公比為q,a2=2,a5=16,a1q=2,=16,解得a1=1,q=2
11、則a6=25=32故選:B【點評】本題考查了等比數(shù)列的通項公式及其性質,考查了推理能力與計算能力,屬于中檔題4 設a0且a1,則“l(fā)ogab1”是“ba”的()A必要不充分條件B充要條件C既不充分也不必要條件D充分不必要條件【分析】設a0且a1,由logab1,可得:1,對a分類討論即可得出【解答】解:設a0且a1,由logab1,可得:1,若0a1,則lgblga,0ba1若1a,則lgblga,ba1“l(fā)ogab1”是“ba”的既不充分也不必要條件故選:C【點評】本題考查了簡易邏輯的判定方法、對數(shù)函數(shù)的單調(diào)性、不等式的解法,考查了推理能力與計算能力,屬于中檔題5 我國魏晉期間的偉大的數(shù)學家
12、劉徽,是最早提出用邏輯推理的方式來論證數(shù)學命題的人,他創(chuàng)立了“割圓術”,得到了著名的“徽率”,即圓周率精確到小數(shù)點后兩位的近似值3.14,如圖就是利用“割圓術”的思想設計的一個程序框圖,則輸出的n值為()(參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305,sin3.75°=0.0654)A24B36C48D12【分析】列出循環(huán)過程中S與n的數(shù)值,滿足判斷框的條件即可結束循環(huán)【解答】解:模擬執(zhí)行程序,可得:n=6,S=3sin60°=,不滿足條件S3.13,n=12,S=6×sin30°=3,不滿足條件S3.13,n=
13、24,S=12×sin15°=12×0.2588=3.1056,不滿足條件S3.13,n=48,S=24×sin7.5°=24×0.1305=3.132,滿足條件S3.13,退出循環(huán),輸出n的值為48故選:C【點評】本題考查循環(huán)框圖的應用,考查了計算能力,注意判斷框的條件的應用,屬于基礎題6 若兩個非零向量,滿足|+|=|=2|,則向量與的夾角為()ABCD【分析】根據(jù)向量的加減的幾何意義和向量的夾角公式即可求出【解答】解:設|=1,則|+|=|=2,=0,故以、為鄰邊的平行四邊形是矩形,且|=,設向量向量與夾角為,則cos=,=,故
14、選:D【點評】本題主要考查兩個向量的加減法及其幾何意義,直角三角形中的邊角關系,求兩個向量的夾角,屬于中檔題7 已知定義在R上的奇函數(shù)f(x)滿足f(x+5)=f(x),且當時,f(x)=x33x,則f(2018)=()A18B18C2D2【分析】根據(jù)題意,分析可得函數(shù)f(x)是周期為5的周期函數(shù),據(jù)此可得f(2018)=f(20102)=f(402×52)=f(2),結合函數(shù)的奇偶性可得f(2)=f(2),結合函數(shù)的解析式可得f(2)的值,綜合即可得答案【解答】解:根據(jù)題意,函數(shù)f(x)滿足f(x+5)=f(x),則函數(shù)f(x)是周期為5的周期函數(shù),則f(2018)=f(20102
15、)=f(402×52)=f(2),又由函數(shù)為奇函數(shù),則f(2)=f(2),又由當時,f(x)=x33x,則f(2)=233×2=2,則f(2018)=f(2)=f(2)=2;故選:C【點評】本題考查函數(shù)奇偶性、周期性的性質以及應用,關鍵是求出函數(shù)的周期8 如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線及粗虛線畫出的是某多面體的三視圖,則該多面體的體積為()AB3C8D【分析】由三視圖還原原幾何體如圖,該幾何體為正方體內(nèi)的四棱錐ABCDE,其中C、D為兩條棱的中點,然后利用等積法求解【解答】解:由三視圖還原原幾何體如圖,該幾何體為正方體內(nèi)的四棱錐ABCDE,其中C、D為兩條棱的中點
16、,則該幾何體的體積V=故選:A【點評】本題考查由三視圖求面積、體積,關鍵是由三視圖還原原幾何體,是中檔題9 某學校A、B兩個班的數(shù)學興趣小組在一次數(shù)學對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩個班數(shù)學興趣小組成績的平均值及方差A班數(shù)學興趣小組的平均成績高于B班的平均成績B班數(shù)學興趣小組的平均成績高于A班的平均成績A班數(shù)學興趣小組成績的標準差大于B班成績的標準差A班數(shù)學興趣小組成績的標準差小于B班成績的標準差其中正確結論的編號為()ABCD【分析】根據(jù)已知中莖葉圖中數(shù)據(jù),代入平均數(shù)及方差公式,可得答案【解答】解:由已知中的莖葉圖可得:=(40+53+62+64+76+74+78+78+76+
17、81+85+86+88+82+92+95)=75.625,sA2=(4080.67)2+(5380.67)2+(6280.67)2+(6480.67)2+(7680.67)2+(7480.67)2+(7880.67)2+(7880.67)2+(7680.67)2+(8180.67)2+(8580.67)2+(8680.67)2+(8880.67)2+(8280.67)2+(9280.67)2+(9580.67)2=198.6094,=(45+48+51+53+56+62+64+65+73+73+74+70+83+82+91)=66,sB2=(4566)2+(4866)2+(5166)2+(53
18、66)2+(5666)2+(6266)2+(6466)2+(6566)2+(7366)2+(7366)2+(7466)2+(7066)2+(8366)2+(8266)2+(9166)2=175.2,sA2sB2正確故選:D【點評】本題考查的知識點是平均數(shù),方差的計算,難度不大,屬于基礎題10 已知函數(shù)f(x)=2sin(x+)(0,|)的部分圖象如圖所示,已知點,若將它的圖象向右平移個單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的圖象的一條對稱軸方程為()ABCD【分析】由條件確定函數(shù)f(x)=Asin(x+)的解析式,再根據(jù)圖象變換規(guī)律和正弦函數(shù)圖象的對稱性,可得結果【解答】解:由f(x
19、)=2sin(x+)的圖象知,f(0)=2sin=,sin=,又|,=或=;當=時,f()=2sin(+)=0,+=,解得=4;f(x)=2sin(4x+);若將它的圖象向右平移個單位,得到函數(shù)g(x)=2sin4(x)+)=2sin(4x)的圖象,令4x=k+,kZ,求得x=+,kZ;不滿足題意;當=時,f()=2sin(+)=0,+=,解得=2;f(x)=2sin(2x+);若將它的圖象向右平移個單位,得到函數(shù)g(x)=2sin2(x)+)=2sin(2x+)的圖象,令2x+=k+,kZ,求得x=+,kZ;k=0時,得函數(shù)g(x)圖象的一條對稱軸方程為x=故選:D【點評】本題主要考查y=A
20、sin(x+)的圖象變換規(guī)律以及正弦函數(shù)圖象的對稱性問題,是中檔題11 已知F1,F(xiàn)2是雙曲線的兩個焦點,點A是雙曲線的右頂點,M(x0,y0)(x00,y00)是雙曲線的漸近線上一點,滿足MF1MF2,如果以點A為焦點的拋物線y2=2px(p0)經(jīng)過點M,則此雙曲線的離心率為()AB2CD【分析】設M(x0,y0),F(xiàn)1(c,0),F(xiàn)2(c,0),由MF1MF2以及點M(x0,y0)在直線y=x上,列出方程,根據(jù)拋物線的定義可知|MF2|=x0+a=2a,然后最后求解雙曲線的離心率即可【解答】解:設M(x0,y0),F(xiàn)1(c,0),F(xiàn)2(c,0),A(a,0)由MF1MF2可知|OM|=|F
21、1F2|=c,又點M(x0,y0)在直線y=x上,所以,解得x0=a,y0=b,于是根據(jù)拋物線的定義可知|MF2|=x0+a=2a,所以=2a,即c2ac2a2=0,由e=可得e2e2=0,解得e=2或e=1(舍去),則雙曲線的離心率為2故選:B【點評】本題考查拋物線以及雙曲線的簡單性質的應用,考查轉化思想以及計算能力,屬于中檔題12 已知函數(shù)f(x)=x+ln(ex+1)圖象上三個不同點A,B,C的橫坐標成公差為1的等差數(shù)列,則ABC面積的最大值為()AlnBCD【分析】不妨設A(x1,y1),B(x2,y2),C(x3,y3),設AC的斜率是k,SABC=×2×|y2y
22、1k|=,令+1=m,求出三角形的最大值【解答】解:不妨設A(x1,y1),B(x2,y2),C(x3,y3),橫坐標公差是1,x2x1=x3x2=1,設AC的斜率是k,則k=,故直線AC的方程是:yy1=k(xx1),故SABC=×2×|y2y1k|=|y2y1k|=|y2y1k|=|y2y1|=,由=ln,令+1=m,原式=ln=ln,當=時,取得最值代入得ln,故SABC=|ln|,故面積的最大值是SABC=ln=ln,故選:D【點評】本題考查了對數(shù)函數(shù)的性質,考查等差數(shù)列以及求函數(shù)的最值問題,是一道綜合題二、填空題(每題5分,滿分20分,將答案填在答題紙上)13 口
23、袋中有形狀和大小完全相同的五個球,編號分別為1,2,3,4,5,若從中一次隨機摸出兩個球,則摸出的兩個球的編號之和大于6的概率為【分析】基本事件總數(shù)n=10,利用列舉法求出摸出的兩個球的編號之和大于6包含的基本事件有4個,由此能求出摸出的兩個球的編號之和大于6的概率【解答】解:口袋中有形狀和大小完全相同的五個球,編號分別為1,2,3,4,5,從中一次隨機摸出兩個球,基本事件總數(shù)n=10,摸出的兩個球的編號之和大于6包含的基本事件有:(2,5),(3,4),(3,5),(4,5),共4個,摸出的兩個球的編號之和大于6的概率為p=故答案為:【點評】本題考查概率的求法,考查古典概型概率計算公式等基礎
24、知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是基礎題14 設變量x,y滿足約束條件,則的最大值為3【分析】作出不等式組對應的平面區(qū)域,設k=,利用斜率的幾何意義進行求解即可【解答】解:作出不等式組對應的平面區(qū)域如圖:設k=,則k的幾何意義為區(qū)域內(nèi)的點到原點的斜率,由圖象知OA的斜率最大,由,得A(1,2),則k=3,故答案為:3【點評】本題主要考查線性規(guī)劃的應用,作出不等式組對應的平面區(qū)域,利用直線斜率的幾何意義是解決本題的關鍵15 已知數(shù)列an的前n項和,如果存在正整數(shù)n,使得(man)(man+1)0成立,則實數(shù)m的取值范圍是(,)【分析】先求出a1,a2,再
25、根據(jù)數(shù)列的遞推公式判斷數(shù)列an的奇數(shù)項為遞增的等比數(shù)列且各項為負,偶數(shù)項為遞減的等比數(shù)列且各項為正,進而不等式(man)(man+1)0成立即存在正整數(shù)n使得a2n+1ma2n成立,只需要a1a3a2n+1ma2na4a2,即a1ma2,由此能求出實數(shù)m的取值范圍【解答】解:數(shù)列an的前n項和Sn=()n,a1=S1=,a2=S2S1=+=a2n=S2nS2n1=()2n()2n1=()2n+2×()2n=×()2n0,a2n+1=S2n+1S2n=()2n+1()2n=×()2n()2n=×()2n0,數(shù)列an的奇數(shù)項為遞增的等比數(shù)列且各項為負,偶數(shù)項
26、為遞減的等比數(shù)列且各項為正,不等式(man)(man+1)0成立即存在正整數(shù)n使得a2n+1ma2n成立,只需要a1a3a2n+1ma2na4a2,即a1ma2,m,故答案為:(,)【點評】本題考查實數(shù)的取值范圍的求法,考查數(shù)列不等式的應用,涉及到數(shù)列的前n項和與數(shù)列中的項的關系等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,考查創(chuàng)新意識、應用意識,是中檔題16 正四面體ABCD的棱長為6,其中AB平面,M,N分別是線段AD,BC的中點,以AB為軸旋轉正四面體,且正四面體始終在平面的同側,則線段MN在平面上的射影長的取值范圍是3,3【分析】取AC中點G,連接MG
27、、NG,在正四面體中求出MN的值,當四面體繞AB旋轉時,求出CD與平面垂直時MN在平面上的射影取得最小值,當CD與平面平行時求出線段MN在平面上的射影取得最大值【解答】解:如圖所示,取AC中點為G,連接MG、NG,M,N分別是線段AD和BC的中點,GNAB,GMCD,在正四面體中,ABCD,GMGN,MN2=GM2+GN2=()2+()2=9+9=18,當四面體繞AB旋轉時,GN平面,GM與GN的垂直性保持不變,當CD與平面垂直時,GM在平面上的射影長最短為0,此時MN在平面上的射影M1N1的長取得最小值為=3;當CD與平面平行時,GM在平面上的射影長最長為=3,M1N1取得最大值為3,線段E
28、F在平面上的射影長的取值范圍是3,3故答案為:3,3【點評】本題考查了線段在平面上的射影取值范圍問題,也考查了考查空間中線線、線面、面面間的位置關系應用問題,是中檔題三、解答題(本大題共7小題,共70分.解答應寫出文字說明、證明過程或演算步驟.)17(12.00分)已知ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,且(1)求角A的大??;(2)設D為AC邊上一點,且BD=5,DC=3,a=7,求c【分析】(1)直接利用三角函數(shù)關系式的恒等變換求出A的值(2)利用正弦定理和余弦定理的應用求出結果【解答】解:(1)ABC的內(nèi)角A,B,C的對邊長分別為a,b,c,且,利用正弦定理和三角函數(shù)的變換,整
29、理得:=,則:sinA=,解得:tanA=,由于:0A,所以:A=(2)由于:D為AC邊上一點,且BD=5,DC=3,a=7,則:在BCD中,cosC=,所以:,利用正弦定理得:,所以:c=解得:c=5【點評】本題考查的知識要點:三角函數(shù)關系式的恒等變換,正弦定理和余弦定理的應用18(12.00分)隨著網(wǎng)絡的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費用也不斷增加,下表是某購物網(wǎng)站2017年18月促銷費用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù):月份12345678促銷費用x2361013211518產(chǎn)品銷量y11233.5544.5(1)根據(jù)數(shù)據(jù)繪制的
30、散點圖能夠看出可用線性回歸模型擬合y與x的關系,請用相關系數(shù)r加以說明;(系數(shù)精確到0.01);(2)建立y關于x的回歸方程(系數(shù)精確到0.01);如果該公司計劃在9月份實現(xiàn)產(chǎn)品銷量超6萬件,預測至少需要投入促銷費用多少萬元(結果精確到0.01)參考數(shù)據(jù):,其中xi,yi分別為第i個月的促銷費用和產(chǎn)品銷量,i=1,2,3,8參考公式:(1)樣本(xi,yi)(i=1,2,n)的相關系數(shù)(2)對于一組數(shù)據(jù)(x1,y1),(x2,y2),(xn,yn),其回歸方程的斜率和截距的最小二乘估計分別為,【分析】(1)根據(jù)數(shù)據(jù)繪制散點圖,從散點圖看出這些點是否大致分布在一條直線附近即可;計算、,求出相關系
31、數(shù),看它的絕對值是否接近于1即可;(2)計算回歸系數(shù),寫出y關于x的回歸方程,利用方程求出對應x的取值范圍即可【解答】解:(1)根據(jù)數(shù)據(jù)繪制散點圖如下,從散點圖可以看出這些點大致分布在一條直線附近,并且在逐步上升,所以可用線性回歸模型擬合y與x的關系;計算=×(2+3+6+10+13+21+15+18)=11,=×(1+1+2+3+3.5+5+4+4.5)=3,相關系數(shù)=0.99,由相關系數(shù)的值接近于1,說明變量y與x的線性相關性很強;(2)計算=0.22,=30.22×11=0.58,y關于x的回歸方程為=0.22x+0.58;令=0.22x+0.586,解得x
32、24.64;即實現(xiàn)產(chǎn)品銷量超6萬件,預測至少需要投入促銷費用24.64萬元【點評】本題考查了統(tǒng)計知識與數(shù)據(jù)處理能力的應用問題,是中檔題19(12.00分)如圖,三棱柱ABCA1B1C1中,側面BB1C1C是邊長為2且CBB1=60°的菱形,AB=AC1(1)證明:平面AB1C平面BB1C1C(2)若ABB1C,AB=BC,求點B到平面A1B1C1的距離.【分析】(1)推導出B1CBC1,BC1AO,從而B1C平面ABC1,由此能證明平面AB1C平面BB1C1C(2)由已知可得AO平面BB1C1C 設點B到平面A1B1C1的距離為h,由,得,【解答】證明:(1)連接BC1交B1C于O,
33、連接AO,側面BB1C1C為菱形,B1CBC1,AB=AC1,O為BC1的中點,AOBC1,又B1CAO=O,BC1平面AB1C,BC1平面BB1C1C平面AB1C平面BB1C1C,解:(2)由ABB1C,BOB1C,ABBO=B,B1C平面ABO,AO平面ABO,AOB1C,又AOBC1,BC1B1C=O,AO平面BB1C1C,菱形BB1C1C的邊長為2且CBB1=60°,AB=BC=2AO=1又CO=1,設點B到平面A1B1C1的距離為h,由,得,點B到平面A1B1C1的距離為【點評】本題考查空間中面面垂直的判定,以及等體積法求點面距離,屬于中檔題20(12.00分)已知圓的圓心
34、C在拋物線x2=2py(p0)上,圓C過原點且與拋物線的準線相切(1)求該拋物線的方程;(2)過拋物線焦點F的直線l交拋物線于A,B兩點,分別在點A,B處作拋物線的兩條切線交于P點,求三角形PAB面積的最小值及此時直線l的方程【分析】(1)由圓C與拋物線F的準線相切,所以b=,又圓C過原點,所以圓心C必在線段OF的垂直平分線上,即b=,求得p=2,即可(2)設A(x1,y1),B(x2,y2),由得,x1+x2=4k,x1x2=4直線AP的方程為,即,同理直線BP方程為,聯(lián)立AP與BP直線方程 得P(2k,1),AB=4(1+k2),點P到直線AB的距離d=2三角形PAB面積S=4(1+k2)
35、4,當僅當k=0時取等號【解答】解:(1)由已知可得圓心C(a,b),半徑r=,焦點F(0,),準線y=因為圓C與拋物線F的準線相切,所以b=,且圓C過焦點F,又因為圓C過原點,所以圓心C必在線段OF的垂直平分線上,即b=所以b=,即p=2,拋物線F的方程為x2=4y(2)易得焦點F(0,1),直線L的斜率必存在,設為k,即直線方程為y=kx+1設A(x1,y1),B(x2,y2)得x24kx4=0,0,x1+x2=4k,x1x2=4對y=求導得,即k直線AP的方程為,即,同理直線BP方程為,設P(x0,y0)聯(lián)立AP與BP直線方程解得,即P(2k,1)所以AB=4(1+k2),點P到直線AB
36、的距離d=2所以三角形PAB面積S=4(1+k2)4,當僅當k=0時取等號綜上:三角形PAB面積最小值為4,此時直線L的方程為y=1【點評】本題考查拋物線的方程的求法,考查切線方程的求法,三角形的面積計算,解題時要認真審題,注意點到直線距離公式的合理運用屬于中檔題21(12.00分)已知函數(shù)其中(aR)(1)當a=0時,求函數(shù)f(x)的單調(diào)區(qū)間;(2)若對于任意x0,都有f(x)0恒成立,求a的取值范圍【分析】(1)判斷f(x)的符號,得出f(x)的單調(diào)區(qū)間;(2)先判斷g(x)=2(x1)lnx(x2x1+)的單調(diào)性得出g(x)0,再分離參數(shù)得出a的范圍【解答】解:(1)當a=0時,f(x)=2(x1)lnx,f(x)=2lnx+=2lnx+2,f(x)在(0,+)上單調(diào)遞增,又f(1)=0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年婚前財產(chǎn)公證及婚姻家庭財產(chǎn)保全與管理協(xié)議
- 2025年度全新員工離職保密協(xié)議及離職后市場競業(yè)限制合同
- 2025年度影視作品贊助協(xié)議書模板下載
- 2025年度安全風險評估廠房租賃安全生產(chǎn)管理合同
- 2025年度特殊行業(yè)安全保衛(wèi)人工成本協(xié)議書
- 2025年度公司股份增發(fā)與投資者權益保護協(xié)議書
- 2025年度公司股東內(nèi)部關于研發(fā)創(chuàng)新成果共享的協(xié)議書
- 2025年度XX金融控股集團股東退股及風險管理協(xié)議
- 2025年度拖欠工資解除勞動合同賠償計算規(guī)范范文
- 2025年貴州文化旅游職業(yè)學院單招職業(yè)技能測試題庫參考答案
- 變電站一次系統(tǒng)圖
- 《思想道德修養(yǎng)與法律基礎》說課(獲獎版)課件
- 幼兒園中班居家安全教案
- 網(wǎng)頁設計和制作說課稿市公開課金獎市賽課一等獎課件
- 《新媒體營銷》新媒體營銷與運營
- 食用油營銷整合規(guī)劃(含文字方案)
- 蘇教版科學五年級下15《升旗的方法》教案
- 現(xiàn)代工業(yè)發(fā)酵調(diào)控緒論
- 超高性能混凝土項目立項申請(參考模板)
- 電纜橋架招標文件范本(含技術規(guī)范書)
- 試車場各種道路施工方案設計
評論
0/150
提交評論