版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 13. 反函數(shù)存在的條件是什么? (一一對(duì)應(yīng)函數(shù)) 求反函數(shù)的步驟掌握了嗎? (反解x;互換x、y;注明定義域) 14. 反函數(shù)的性質(zhì)有哪些? 反函數(shù)性質(zhì):1、 反函數(shù)的定義域是原函數(shù)的值域 (可擴(kuò)展為反函數(shù)中的x對(duì)應(yīng)原函數(shù)中的y)2、 反函數(shù)的值域是原函數(shù)的定義域(可擴(kuò)展為反函數(shù)中的y對(duì)應(yīng)原函數(shù)中的x)3、 反函數(shù)的圖像和原函數(shù)關(guān)于直線=x對(duì)稱(難怪點(diǎn)(x,y)和點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱 互為反函數(shù)的圖象關(guān)于直線yx對(duì)稱; 保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性; 由反函數(shù)的性質(zhì),可以快速的解出很多比較麻煩的題目,如(04. 上海春季高考)已知函數(shù),則方程的解_.1對(duì)于這一類題目,其實(shí)方法
2、特別簡(jiǎn)單,呵呵。已知反函數(shù)的y,不就是原函數(shù)的x嗎?那代進(jìn)去阿,答案是不是已經(jīng)出來(lái)了呢?(也可能是告訴你反函數(shù)的x值,那方法也一樣,呵呵。 自己想想,不懂再問(wèn)我 15 . 如何用定義證明函數(shù)的單調(diào)性? (取值、作差、判正負(fù))判斷函數(shù)單調(diào)性的方法有三種:(1)定義法:根據(jù)定義,設(shè)任意得x1,x2,找出f(x1),f(x2)之間的大小關(guān)系可以變形為求的正負(fù)號(hào)或者與1的關(guān)系(2)參照?qǐng)D象:若函數(shù)f(x)的圖象關(guān)于點(diǎn)(a,b)對(duì)稱,函數(shù)f(x)在關(guān)于點(diǎn)(a,0)的對(duì)稱區(qū)間具有相同的單調(diào)性; (特例:奇函數(shù))若函數(shù)f(x)的圖象關(guān)于直線xa對(duì)稱,則函數(shù)f(x)在關(guān)于點(diǎn)(a,0)的對(duì)稱區(qū)間里具有相反的單調(diào)
3、性。(特例:偶函數(shù))(3)利用單調(diào)函數(shù)的性質(zhì):函數(shù)f(x)與f(x)c(c是常數(shù))是同向變化的函數(shù)f(x)與cf(x)(c是常數(shù)),當(dāng)c0時(shí),它們是同向變化的;當(dāng)c0時(shí),它們是反向變化的。如果函數(shù)f1(x),f2(x)同向變化,則函數(shù)f1(x)f2(x)和它們同向變化;(函數(shù)相加)如果正值函數(shù)f1(x),f2(x)同向變化,則函數(shù)f1(x)f2(x)和它們同向變化;如果負(fù)值函數(shù)f1(2)與f2(x)同向變化,則函數(shù)f1(x)f2(x)和它們反向變化;(函數(shù)相乘)函數(shù)f(x)與在f(x)的同號(hào)區(qū)間里反向變化。若函數(shù)u(x),x,與函數(shù)yF(u),u(),()或u(),()同向變化,則在,上復(fù)合函
4、數(shù)yF(x)是遞增的;若函數(shù)u(x),x,與函數(shù)yF(u),u(),()或u(),()反向變化,則在,上復(fù)合函數(shù)yF(x)是遞減的。(同增異減)若函數(shù)yf(x)是嚴(yán)格單調(diào)的,則其反函數(shù)xf1(y)也是嚴(yán)格單調(diào)的,而且,它們的增減性相同。f(g)g(x)fg(x)f(x)+g(x)f(x)*g(x) 都是正數(shù)增增增增增增減減/減增減/減減增減減 )16. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性? 值是( ) A. 0B. 1C. 2D. 3 a的最大值為3)17. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么? (f(x)定義域關(guān)于原點(diǎn)對(duì)稱) 注意如下結(jié)論: (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶
5、函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。 判斷函數(shù)奇偶性的方法一、 定義域法一個(gè)函數(shù)是奇(偶)函數(shù),其定義域必關(guān)于原點(diǎn)對(duì)稱,它是函數(shù)為奇(偶)函數(shù)的必要條件.若函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則函數(shù)為非奇非偶函數(shù).二、 奇偶函數(shù)定義法在給定函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱的前提下,計(jì)算,然后根據(jù)函數(shù)的奇偶性的定義判斷其奇偶性.三、 復(fù)合函數(shù)奇偶性f(g)g(x)fg(x)f(x)+g(x)f(x)*g(x)奇奇奇奇偶奇偶偶非奇非偶奇偶奇偶非奇非偶奇偶偶偶偶偶18. 你熟悉周期函數(shù)的定義嗎? 函數(shù),T是一個(gè)周期。) 我們?cè)谧鲱}的時(shí)候,經(jīng)常會(huì)遇到這樣的情況:告訴你f(x)+f(x+t
6、)=0,我們要馬上反應(yīng)過(guò)來(lái),這時(shí)說(shuō)這個(gè)函數(shù)周期2t. 推導(dǎo):,同時(shí)可能也會(huì)遇到這種樣子:f(x)=f(2a-x),或者說(shuō)f(a-x)=f(a+x).其實(shí)這都是說(shuō)同樣一個(gè)意思:函數(shù)f(x)關(guān)于直線對(duì)稱, 對(duì)稱軸可以由括號(hào)內(nèi)的2個(gè)數(shù)字相加再除以2得到。比如,f(x)=f(2a-x),或者說(shuō)f(a-x)=f(a+x)就都表示函數(shù)關(guān)于直線x=a對(duì)稱。 如: 19. 你掌握常用的圖象變換了嗎? 聯(lián)想點(diǎn)(x,y),(-x,y) 聯(lián)想點(diǎn)(x,y),(x,-y) 聯(lián)想點(diǎn)(x,y),(-x,-y) 聯(lián)想點(diǎn)(x,y),(y,x) 聯(lián)想點(diǎn)(x,y),(2a-x,y) 聯(lián)想點(diǎn)(x,y),(2a-x,0) (這是書(shū)上的
7、方法,雖然我從來(lái)不用, 但可能大家接觸最多,我還是寫(xiě)出來(lái)吧。對(duì)于這種題目,其實(shí)根本不用這么麻煩。你要判斷函數(shù)y-b=f(x+a)怎么由y=f(x)得到,可以直接令y-b=0,x+a=0,畫(huà)出點(diǎn)的坐標(biāo)。 看點(diǎn)和原點(diǎn)的關(guān)系,就可以很直觀的看出函數(shù)平移的軌跡了。) 注意如下“翻折”變換: 19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎? (k為斜率,b為直線與y軸的交點(diǎn)) 的雙曲線。 應(yīng)用:“三個(gè)二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系二次方程求閉區(qū)間m,n上的最值。 求區(qū)間定(動(dòng)),對(duì)稱軸動(dòng)(定)的最值問(wèn)題。 一元二次方程根的分布問(wèn)題。 由圖象記性質(zhì)! (注意底數(shù)的限定?。?利用它的單調(diào)性求最值
8、與利用均值不等式求最值的區(qū)別是什么?(均值不等式一定要注意等號(hào)成立的條件)20. 你在基本運(yùn)算上常出現(xiàn)錯(cuò)誤嗎? 21. 如何解抽象函數(shù)問(wèn)題? (賦值法、結(jié)構(gòu)變換法) (對(duì)于這種抽象函數(shù)的題目,其實(shí)簡(jiǎn)單得都可以直接用死記了1、 代y=x,2、 令x=0或1來(lái)求出f(0)或f(1)3、 求奇偶性,令y=x;求單調(diào)性:令x+y=x1 幾類常見(jiàn)的抽象函數(shù) 1. 正比例函數(shù)型的抽象函數(shù) f(x)kx(k0)-f(x±y)f(x)±f(y)2. 冪函數(shù)型的抽象函數(shù) f(x)xa-f(xy) f(x)f(y);f()3. 指數(shù)函數(shù)型的抽象函數(shù) f(x)ax- f(xy)f(x)f(y);
9、f(xy)4. 對(duì)數(shù)函數(shù)型的抽象函數(shù)f(x)logax(a>0且a1)-f(x·y)f(x)f(y);f() f(x)f(y)5. 三角函數(shù)型的抽象函數(shù)f(x)tgx- f(xy)f(x)cotx- f(xy)例1已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y均有f(xy)f(x)f(y),且當(dāng)x>0時(shí),f(x)>0,f(1) 2求f(x)在區(qū)間2,1上的值域.分析:先證明函數(shù)f(x)在R上是增函數(shù)(注意到f(x2)f(x2x1)x1f(x2x1)f(x1);再根據(jù)區(qū)間求其值域.例2已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y均有f(xy)2f(x)f(y),且當(dāng)x>0時(shí),f(x)&g
10、t;2,f(3) 5,求不等式 f(a22a2)<3的解.分析:先證明函數(shù)f(x)在R上是增函數(shù)(仿例1);再求出f(1)3;最后脫去函數(shù)符號(hào).例3已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y都有f(xy)f(x)f(y),且f(1)1,f(27)9,當(dāng)0x1時(shí),f(x)0,1.(1) 判斷f(x)的奇偶性;(2) 判斷f(x)在0,上的單調(diào)性,并給出證明;(3) 若a0且f(a1),求a的取值范圍.分析:(1)令y1; (2)利用f(x1)f(·x2)f()f(x2); (3)0a2.例4設(shè)函數(shù)f(x)的定義域是(,),滿足條件:存在x1x2,使得f(x1)f(x2);對(duì)任何x和y,f(
11、xy)f(x)f(y)成立.求:(1) f(0);(2) 對(duì)任意值x,判斷f(x)值的符號(hào).分析:(1)令x= y0;(2)令yx0.例5是否存在函數(shù)f(x),使下列三個(gè)條件:f(x)>0,xN;f(ab) f(a)f(b),a、bN;f(2)4.同時(shí)成立?若存在,求出f(x)的解析式,若不存在,說(shuō)明理由.分析:先猜出f(x)2x;再用數(shù)學(xué)歸納法證明.例6設(shè)f(x)是定義在(0,)上的單調(diào)增函數(shù),滿足f(x·y)f(x)f(y),f(3)1,求:(1) f(1);(2) 若f(x)f(x8)2,求x的取值范圍.分析:(1)利用31×3;(2)利用函數(shù)的單調(diào)性和已知關(guān)系
12、式.例7設(shè)函數(shù)y f(x)的反函數(shù)是yg(x).如果f(ab)f(a)f(b),那么g(ab)g(a)·g(b)是否正確,試說(shuō)明理由.分析:設(shè)f(a)m,f(b)n,則g(m)a,g(n)b,進(jìn)而mnf(a)f(b) f(ab)f g(m)g(n).例8已知函數(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,且滿足以下三個(gè)條件: x1、x2是定義域中的數(shù)時(shí),有f(x1x2); f(a) 1(a0,a是定義域中的一個(gè)數(shù)); 當(dāng)0x2a時(shí),f(x)0. 試問(wèn):(1) f(x)的奇偶性如何?說(shuō)明理由;(2) 在(0,4a)上,f(x)的單調(diào)性如何?說(shuō)明理由. 分析:(1)利用f (x1x2) f (x1x2
13、),判定f(x)是奇函數(shù);(3) 先證明f(x)在(0,2a)上是增函數(shù),再證明其在(2a,4a)上也是增函數(shù). 對(duì)于抽象函數(shù)的解答題,雖然不可用特殊模型代替求解,但可用特殊模型理解題意.有些抽象函數(shù)問(wèn)題,對(duì)應(yīng)的特殊模型不是我們熟悉的基本初等函數(shù).因此,針對(duì)不同的函數(shù)要進(jìn)行適當(dāng)變通,去尋求特殊模型,從而更好地解決抽象函數(shù)問(wèn)題. 例9已知函數(shù)f(x)(x0)滿足f(xy)f(x)f(y),(1) 求證:f(1)f(1)0;(2) 求證:f(x)為偶函數(shù);(3) 若f(x)在(0,)上是增函數(shù),解不等式f(x)f(x)0.分析:函數(shù)模型為:f(x)loga|x|(a0)(1) 先令xy1,再令xy
14、 1;(2) 令y 1;(3) 由f(x)為偶函數(shù),則f(x)f(|x|).例10已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x、y滿足f(0)0,f(xy)f(x)·f(y),且當(dāng)x0時(shí),f(x)1,求證:(1) 當(dāng)x0時(shí),0f(x)1;(2) f(x)在xR上是減函數(shù).分析:(1)先令xy0得f(0)1,再令yx;(3) 受指數(shù)函數(shù)單調(diào)性的啟發(fā):由f(xy)f(x)f(y)可得f(xy),進(jìn)而由x1x2,有f(x1x2)1.練習(xí)題:1.已知:f(xy)f(x)f(y)對(duì)任意實(shí)數(shù)x、y都成立,則( )(A)f(0)0 (B)f(0)1 (C)f(0)0或1 (D)以上都不對(duì)2. 若對(duì)任意實(shí)數(shù)x、y總有f(xy)f(x)f(y),則下列各式中錯(cuò)誤的是( )(A)f(1)0 (B)f() f(x) (C)f() f(x)f(y) (D)f(xn)nf(x)(nN)3.已知函數(shù)f(x)對(duì)一切實(shí)數(shù)x、y滿足:f(0)0,f(xy)f(x)f(y),且當(dāng)x0時(shí),f(x)1,則當(dāng)x0時(shí),f(x)的取值范圍是( )(A)(1,) (B)(,1)(C)(0,1) (D)(1,)4.函數(shù)f(x)定義域關(guān)于原點(diǎn)對(duì)稱,且對(duì)定義域內(nèi)不同的x1、x2都有f(x1x2),則f(x)為( )(A)奇函數(shù)非偶函
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 季節(jié)性主題活動(dòng)設(shè)置方案計(jì)劃
- 錨桿轉(zhuǎn)載機(jī)組、掘錨機(jī)、錨桿鉆車(chē)擴(kuò)建技術(shù)改造建設(shè)項(xiàng)目可行性研究報(bào)告寫(xiě)作模板-拿地備案
- 十年回顧:2010年以來(lái)那些重大的網(wǎng)絡(luò)安全事件盤(pán)點(diǎn)
- 2025-2030全球車(chē)用拉力缸行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球生物過(guò)程深層流過(guò)濾行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球模擬拉線延長(zhǎng)位置探頭行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球LPWAN物聯(lián)網(wǎng)模塊行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)電動(dòng)汽車(chē)轉(zhuǎn)子鐵芯行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國(guó)翻新電池行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球汽車(chē)MIMO智能天線行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2024年公安機(jī)關(guān)理論考試題庫(kù)附答案【考試直接用】
- 課題申報(bào)參考:共同富裕進(jìn)程中基本生活保障的內(nèi)涵及標(biāo)準(zhǔn)研究
- 2025中國(guó)聯(lián)通北京市分公司春季校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 康復(fù)醫(yī)學(xué)科患者隱私保護(hù)制度
- 環(huán)保工程信息化施工方案
- 紅色中國(guó)風(fēng)2025蛇年介紹
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 高中學(xué)校開(kāi)學(xué)典禮方案
- 2024年度中國(guó)郵政集團(tuán)公司縣分公司工作總結(jié)
- DL∕T 1844-2018 濕式靜電除塵器用導(dǎo)電玻璃鋼陽(yáng)極檢驗(yàn)規(guī)范
- JTG D62-2004 公路鋼筋混凝土及預(yù)應(yīng)力混凝土橋涵設(shè)計(jì)規(guī)范
評(píng)論
0/150
提交評(píng)論