微分中值定理導(dǎo)數(shù)的應(yīng)用_第1頁(yè)
微分中值定理導(dǎo)數(shù)的應(yīng)用_第2頁(yè)
微分中值定理導(dǎo)數(shù)的應(yīng)用_第3頁(yè)
微分中值定理導(dǎo)數(shù)的應(yīng)用_第4頁(yè)
微分中值定理導(dǎo)數(shù)的應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、第三章微分中值定理導(dǎo)數(shù)的應(yīng)用教學(xué)目的與要求1掌握并會(huì)應(yīng)用羅爾定理、拉格朗日中值定理,了解柯西中值定理和泰勒中值定理。2理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其簡(jiǎn)單應(yīng)用。3 用二階導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性,會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形。4 握用洛必達(dá)法則求未定式極限的方法。5 道曲率和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑。6 了解方程近似解的二分法及切線法。一、中值定理,泰勒公式(放入泰勒級(jí)數(shù)中講)1 羅爾定理如滿足:(1)在連續(xù). (2)在可導(dǎo). (3) 則至少存在一點(diǎn) 使例 設(shè),則 在區(qū)間(-1,0)內(nèi)

2、,方程 有2個(gè)實(shí)根;在(-1,1)內(nèi)有2個(gè)根例 設(shè)在0,1可導(dǎo),且, 證明存在,使。證: 設(shè)在a,b可導(dǎo), 存在使 即例 設(shè)在0,1可導(dǎo),且, 證明存在 。解: 設(shè),且 由羅爾定理 存在 使 即, 亦即例 習(xí)題6 設(shè)(復(fù)合函數(shù)求導(dǎo))2、 拉格朗日中值定理如滿足:在a,b連續(xù);在(a,b)連續(xù),則存在使。推論: 如果在區(qū)間I上,則 如果在區(qū)間I上, 在單增(減)例對(duì)任意滿足的x, 都有設(shè) 例 設(shè),證明求導(dǎo)證明作業(yè):見各章節(jié)課后習(xí)題。二、洛必達(dá)法則未定形:如下的函數(shù)極限都是未定形。 1、型: 如:型:2、型: 如:3、型: 如:4、型:如:5、 型: 如:6、 型: 如:7、 型: 如:它們的計(jì)算

3、不能用函數(shù)極限的四則運(yùn)算法則,且它們只表示類型,沒有具體意義。 1、 ()型的洛必達(dá)法則(同理)定理:對(duì)函數(shù)和,如果:(1), (2)在某個(gè)鄰域內(nèi)(后)有導(dǎo)數(shù)和,且;(3)存在(或無窮),則成立:=例:1) 2) 3) 例: 1) 2) 3) (>0)3、其它類型1) 2) 3) 4) 解法同3) 例 : 1) 2) 3) 4) 三、泰勒公式 一、多項(xiàng)式: 在點(diǎn)的各階導(dǎo)數(shù): 得:二、泰勒中值定理:如果函數(shù)在含有的某個(gè)開區(qū)間有直到階的導(dǎo)數(shù),則對(duì)任一有:1、(N階泰勒公式)稱為余項(xiàng)。(1)( 在與之間)拉格朗日型余項(xiàng)(2) 皮亞諾余項(xiàng)。2、當(dāng)?shù)名溈藙诹止剑喝⒊R姾瘮?shù)的泰勒展開1) 2)

4、3) 四、函數(shù)的性態(tài)1、極值1)定義:如在鄰域內(nèi),恒有, ,則稱為函數(shù)的一個(gè)極大(?。┲???赡軜O值點(diǎn), 不存在的點(diǎn)與的點(diǎn)。(駐點(diǎn))駐點(diǎn) 極值點(diǎn)2)判別方法、導(dǎo)數(shù)變號(hào)。 極小值極大值、,例1、 設(shè)滿足關(guān)系式,且, ,則在點(diǎn)處 A A、取得極大值 B、取得最小值 C、在某鄰域內(nèi)單增 D、在某鄰域內(nèi)單減例2已知函數(shù)對(duì)一切滿足 如,則 A A、 是的極小值B、是的極大值 C、是曲線的拐點(diǎn)D、不是的極值,也不是曲線 的拐點(diǎn)。例3 設(shè)函數(shù)在的某鄰域內(nèi)可導(dǎo),則是的極 大 值。2、函數(shù)的最大值與最小值(1)求出內(nèi)可能的極值點(diǎn),不需判別極大還是極小,求出它們的函數(shù)值,再與端點(diǎn)的函數(shù)值進(jìn)行比較,其中最大的(?。?/p>

5、最大(?。┲?。(2)在內(nèi)可能極值點(diǎn)唯一,如是極小值則為最小值;如是極大值則為最大值。 (3)如分別為最小, 最大值。(4)實(shí)際問題據(jù)題意可不判別。 例1、 在拋物線上的第一象限部分求一點(diǎn)P,過P點(diǎn)作切線,使該切線與坐標(biāo)軸所圍成的三角形面積最小。 解:設(shè)切點(diǎn)為,切線方程為即 三角形面積: ,令 (唯一) 故 為所求點(diǎn)3、曲線的凹凸、拐點(diǎn)及漸近線 在I上可導(dǎo) 如則曲線是凹(凸)的, 在連續(xù)曲線上凹凸部分的分界點(diǎn)稱為曲線的拐點(diǎn)。 可能的拐點(diǎn)和不存在的點(diǎn)例1、 設(shè),試討論的性態(tài)。x(-,-2)-2(-2,0)0(0,1)1(1,+ )y+0-間斷+0+y-0+y 單調(diào)增上凸極大值 單減上凸單增上凸拐點(diǎn)(1,0) 單增下凸?jié)u近線如 則稱為水平漸近線如 則稱為垂直漸近線漸近線可能沒有,或多條。例2、求漸近線(斜漸近線不討論)解: 為水平漸近線 垂直漸近線例2、 曲線的漸近線有 4 條4證明不等式(1)利用中值定理(R,L);(2)利用函數(shù)單調(diào)性;(3)利用最值;(4)引入輔助函數(shù)把常值不等式變成函數(shù)不等式;(5)利用函數(shù)凹凸性;(6)利用泰勒公式。例1、 當(dāng),試即證:證: 設(shè),在連續(xù),可導(dǎo),由拉格朗日中值定理 即 例2、設(shè),證明證: 設(shè)單增,當(dāng) 設(shè) 單增,當(dāng) 例3、當(dāng)證明 證: 令 令得 駐點(diǎn)唯一, 極小 為最小值即 例4、 當(dāng) 證明 證: 設(shè) 令 , 駐點(diǎn)唯一 當(dāng) ,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論