八年級上數(shù)學(xué)復(fù)習(xí)提綱全_第1頁
八年級上數(shù)學(xué)復(fù)習(xí)提綱全_第2頁
八年級上數(shù)學(xué)復(fù)習(xí)提綱全_第3頁
八年級上數(shù)學(xué)復(fù)習(xí)提綱全_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、第十一章 全等三角形復(fù)習(xí)一、全等三角形能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。2、全等三角形有哪些性質(zhì)(1):全等三角形的對應(yīng)邊相等、對應(yīng)角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應(yīng)邊上的對應(yīng)中線、角平分線、高線分別相等。3、全等三角形的判定邊邊邊:三邊對應(yīng)相等的兩個三角形全等(可簡寫成“SSS”)邊角邊:兩邊和它們的夾角對應(yīng)相等兩個三角形全等(可簡寫成“SAS”)角邊角:兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(可簡寫成“ASA”)角角邊:兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等(可簡寫成“AAS”)斜邊.直角

2、邊:斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(可簡寫成“HL”)4、證明兩個三角形全等的基本思路:二、角的平分線:1、(性質(zhì))角的平分線上的點(diǎn)到角的兩邊的距離相等.2、(判定)角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上。三、學(xué)習(xí)全等三角形應(yīng)注意以下幾個問題:(1):要正確區(qū)分“對應(yīng)邊”與“對邊”,“對應(yīng)角”與 “對角”的不同含義;(2):表示兩個三角形全等時,表示對應(yīng)頂點(diǎn)的字母要寫在對應(yīng)的位置上;(3):“有三個角對應(yīng)相等”或“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等;(4):時刻注意圖形中的隱含條件,如 “公共角” 、“公共邊”、“對頂角”第十二章 軸對稱一、軸對稱圖形

3、1. 把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。2. 把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點(diǎn)是對應(yīng)點(diǎn),叫做對稱點(diǎn)3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系 4.軸對稱的性質(zhì) 關(guān)于某直線對稱的兩個圖形是全等形。 如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。 軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。 如果兩個圖形的對應(yīng)點(diǎn)連線被同條直線垂直平分,那么這

4、兩個圖形關(guān)于這條直線對稱。二、線段的垂直平分線 1. 經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。2.線段垂直平分線上的點(diǎn)與這條線段的兩個端點(diǎn)的距離相等 3.與一條線段兩個端點(diǎn)距離相等的點(diǎn),在線段的垂直平分線上三、用坐標(biāo)表示軸對稱小結(jié): 在平面直角坐標(biāo)系中,關(guān)于x軸對稱的點(diǎn)橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù).關(guān)于y軸對稱的點(diǎn)橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等.點(diǎn)(x, y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為_.點(diǎn)(x, y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為_.2.三角形三條邊的垂直平分線相交于一點(diǎn),這個點(diǎn)到三角形三個頂點(diǎn)的距離相等四、(等腰三角形)知識點(diǎn)回顧1.等腰三角形的性質(zhì).等腰三角形的

5、兩個底角相等。(等邊對等角).等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)2、等腰三角形的判定: 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)五、(等邊三角形)知識點(diǎn)回顧1.等邊三角形的性質(zhì):等邊三角形的三個角都相等,并且每一個角都等于600 。2、等邊三角形的判定: 三個角都相等的三角形是等邊三角形。 有一個角是600的等腰三角形是等邊三角形。3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。 第十三章 實(shí)數(shù)知識要點(diǎn)歸納一、實(shí)數(shù)的分類:2、數(shù)軸:規(guī)定了 、 和 的直線叫做數(shù)軸(畫數(shù)軸時,要注童上述規(guī)定的三要素缺一

6、個不可), 實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對應(yīng)的。 數(shù)軸上任一點(diǎn)對應(yīng)的數(shù)總大于這個點(diǎn)左邊的點(diǎn)對應(yīng)的數(shù)。3、相反數(shù)與倒數(shù);4、絕對值 5、近似數(shù)與有效數(shù)字;6、科學(xué)記數(shù)法7、平方根與算術(shù)平方根、立方根;8、非負(fù)數(shù)的性質(zhì):若幾個非負(fù)數(shù)之和為零 ,則這幾個數(shù)都等于零。二、復(fù)習(xí)方案二1. 無理數(shù):無限不循環(huán)小數(shù)第十四章 一次函數(shù)一.常量、變量: 在一個變化過程中,數(shù)值發(fā)生變化的量叫做 變量 ;數(shù)值始終不變的量叫做 常量 ;二、函數(shù)的概念:函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)三、函數(shù)中自變量取值范

7、圍的求法:(1).用整式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實(shí)數(shù)。(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實(shí)數(shù)。 用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負(fù)數(shù)的一 切實(shí)數(shù)。(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。(5)對于與實(shí)際問題有關(guān)系的,自變量的取值范圍應(yīng)使實(shí)際問題有意義。四、 函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點(diǎn)的橫、縱坐標(biāo),那么在坐標(biāo)平面內(nèi)由這些點(diǎn)組成的圖形,就是這個函數(shù)的圖象五、用描點(diǎn)法畫函

8、數(shù)的圖象的一般步驟1、列表(表中給出一些自變量的值及其對應(yīng)的函數(shù)值。)注意:列表時自變量由小到大,相差一樣,有時需對稱。2、描點(diǎn):(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)的函數(shù)值為縱坐標(biāo),描出表格中數(shù)值對應(yīng)的各點(diǎn)。 3、連線:(按照橫坐標(biāo)由小到大的順序把所描的各點(diǎn)用平滑的曲線連接起來)。六、函數(shù)有三種表示形式:(1)列表法 (2)圖像法 (3)解析式法七、正比例函數(shù)與一次函數(shù)的概念:一般地,形如y=kx(k為常數(shù),且k0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。 一般地,形如y=kx+b(k,b為常數(shù),且k0)的函數(shù)叫做一次函數(shù). 當(dāng)b =0 時,y=kx+b 即為 y=kx,所以正比例

9、函數(shù),是一次函數(shù)的特例.八、正比例函數(shù)的圖象與性質(zhì):(1)圖象:正比例函數(shù)y= kx (k 是常數(shù),k0) 的圖象是經(jīng)過原點(diǎn)的一條直線,我們稱它為直線y= kx 。 (2)性質(zhì):當(dāng)k>0時,直線y= kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當(dāng)k<0時,直線y= kx經(jīng)過二,四象限,從左向右下降,即隨著 x的增大y反而減小。九、求函數(shù)解析式的方法:待定系數(shù)法:先設(shè)出函數(shù)解析式,再根據(jù)條件確定解析式中未知的系數(shù),從而具體寫出這個式子的方法。1. 一次函數(shù)與一元一次方程:從“數(shù)”的角度看x為何值時函數(shù)y= ax+b的值為0 2. 求ax+b=0(a, b是常數(shù),a0)

10、的解,從“形”的角度看,求直線y= ax+b與 x 軸交點(diǎn)的橫坐標(biāo)3. 一次函數(shù)與一元一次不等式:解不等式ax+b0(a,b是常數(shù),a0) 從“數(shù)”的角度看,x為何值時函數(shù)y= ax+b的值大于0 4. 解不等式ax+b0(a,b是常數(shù),a0) 從“形”的角度看,求直線y= ax+b在 x 軸上方的部分(射線)所對應(yīng)的的橫坐標(biāo)的取值范圍十、一次函數(shù)與正比例函數(shù)的圖象與性質(zhì)一次函數(shù) 概念如果y=kx+b(k、b是常數(shù),k0),那么y叫x的一次函數(shù).當(dāng)b=0時,一次函數(shù)y=kx(k0)也叫正比例函數(shù). 圖像一條直線性質(zhì)k0時,y隨x的增大(或減小)而增大(或減小);k0時,y隨x的增大(或減小)而

11、減小(或增大). 直線y=kx+b(k0)的位置與k、b符號之間的關(guān)系.(1)k>0,b0; (2)k>0,b0;(3)k>0,b0 (4)k0,b0;(5)k0,b0 (6)k0,b0一次函數(shù)表達(dá)式的確定求一次函數(shù)y=kx+b(k、b是常數(shù),k0)時,需要由兩個點(diǎn)來確定;求正比例函數(shù)y=kx(k0)時,只需一個點(diǎn)即可. 5.一次函數(shù)與二元一次方程組:解方程組從“數(shù)”的角度看,自變量(x)為何值時兩個函數(shù)的值相等并求出這個函數(shù)值 解方程組 從“形”的角度看,確定兩直線交點(diǎn)的坐標(biāo). 第十五章 整式乘除與因式分解一回顧知識點(diǎn) 1、主要知識回顧:冪的運(yùn)算性質(zhì):am·ana

12、mn (m、n為正整數(shù))同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加 amn (m、n為正整數(shù))冪的乘方,底數(shù)不變,指數(shù)相乘 (n為正整數(shù))積的乘方等于各因式乘方的積 amn (a0,m、n都是正整數(shù),且mn)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減零指數(shù)冪的概念:a01 (a0)任何一個不等于零的數(shù)的零指數(shù)冪都等于l負(fù)指數(shù)冪的概念:ap (a0,p是正整數(shù))任何一個不等于零的數(shù)的p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù)也可表示為:(m0,n0,p為正整數(shù))單項(xiàng)式的乘法法則:單項(xiàng)式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項(xiàng)式里含有的字母,則連同它的指數(shù)作為積的一個因式單項(xiàng)式與多項(xiàng)式的

13、乘法法則:單項(xiàng)式與多項(xiàng)式相乘,用單項(xiàng)式和多項(xiàng)式的每一項(xiàng)分別相乘,再把所得的積相加多項(xiàng)式與多項(xiàng)式的乘法法則:多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式的每一項(xiàng)與另一個多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加單項(xiàng)式的除法法則:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式多項(xiàng)式除以單項(xiàng)式的法則:多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以這個單項(xiàng)式,再把所得的商相加 2、乘法公式:平方差公式:(ab)(ab)a2b2文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差完全平方公式:(ab)2a22abb2 (ab)2a22a

14、bb2文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍 3、因式分解:因式分解的定義把一個多項(xiàng)式化成幾個整式的乘積的形式,這種變形叫做把這個多項(xiàng)式因式分解 掌握其定義應(yīng)注意以下幾點(diǎn): (1)分解對象是多項(xiàng)式,分解結(jié)果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;(2)因式分解必須是恒等變形; (3)因式分解必須分解到每個因式都不能分解為止弄清因式分解與整式乘法的內(nèi)在的關(guān)系因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式 二、熟練掌握因式分解的常用方法1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的關(guān)鍵是找出公因式,公因式的構(gòu)成一般情況下有三部分:系數(shù)一各項(xiàng)系數(shù)的最大公約數(shù);字母各項(xiàng)含有的相同字母;指數(shù)相同字母的最低次數(shù);(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論