高等數(shù)學(xué)的寒假?gòu)?fù)習(xí)計(jì)劃安排_(tái)第1頁(yè)
高等數(shù)學(xué)的寒假?gòu)?fù)習(xí)計(jì)劃安排_(tái)第2頁(yè)
高等數(shù)學(xué)的寒假?gòu)?fù)習(xí)計(jì)劃安排_(tái)第3頁(yè)
高等數(shù)學(xué)的寒假?gòu)?fù)習(xí)計(jì)劃安排_(tái)第4頁(yè)
高等數(shù)學(xué)的寒假?gòu)?fù)習(xí)計(jì)劃安排_(tái)第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2019高等數(shù)學(xué)的寒假?gòu)?fù)習(xí)計(jì)劃安排導(dǎo)讀:寒假馬上就要來(lái)臨,很多家長(zhǎng)都忙著給孩子們找假期補(bǔ)課班。雖然說(shuō)放假不等于放松,適當(dāng)學(xué)習(xí)是必要的,但是如果過(guò)多的給予孩子壓力反而會(huì)適得其反,完全可以讓孩子做到學(xué)習(xí)和休息兩不誤。但是諸位家長(zhǎng)一定要弄明白假期里孩子要學(xué)習(xí)什么?今天,查字典數(shù)學(xué)網(wǎng)小編末寶就帶了了高等數(shù)學(xué)的寒假?gòu)?fù)習(xí)計(jì)劃安排,一起來(lái)看看吧。首先,先將寒假分為六個(gè)階段,然后按下面計(jì)劃進(jìn)行,完成高等數(shù)學(xué)(上)的復(fù)習(xí)內(nèi)容。1第一階段復(fù)習(xí)計(jì)劃:復(fù)習(xí)高數(shù)書(shū)上冊(cè)第一章,需要達(dá)到以下目標(biāo):1. 理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問(wèn)題的函數(shù)關(guān)系.2. 了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.3. 理解復(fù)合

2、函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.4. 掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.5. 理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左、右極限之間的關(guān)系.6. 掌握極限的性質(zhì)及四則運(yùn)算法則.7. 掌握極限存在的兩個(gè)準(zhǔn)則,并會(huì)利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法.8. 理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì)用等價(jià)無(wú)窮小量求極限.9. 理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會(huì)判別函數(shù)間斷點(diǎn)的類(lèi)型.10. 了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性

3、質(zhì).本階段主要任務(wù)是掌握函數(shù)的有界性、單調(diào)性、周期性和奇偶性;基本初等函數(shù)的性質(zhì)及其圖形;數(shù)列極限與函數(shù)極限的定義及其性質(zhì);無(wú)窮小量的比較;兩個(gè)重要極限;函數(shù)連續(xù)的概念、函數(shù)間斷點(diǎn)的類(lèi)型;閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。2 第二階段復(fù)習(xí)計(jì)劃:復(fù)習(xí)高數(shù)書(shū)上冊(cè)第二章1-3節(jié),需達(dá)到以下目標(biāo):1. 理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會(huì)用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系.2. 掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運(yùn)算法則和一階微分形式的不變性,會(huì)求函數(shù)的微

4、分.3. 了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的高階導(dǎo)數(shù).本周主要任務(wù)是掌握導(dǎo)數(shù)的幾何意義;函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系;平面曲線的切線和法線;牢記基本初等函數(shù)的導(dǎo)數(shù)公式;會(huì)用遞推法計(jì)算高階導(dǎo)數(shù)。3 第三階段復(fù)習(xí)計(jì)劃:復(fù)習(xí)高數(shù)書(shū)上冊(cè)第二章4-5節(jié),第三章1-5節(jié)。需達(dá)到以下目標(biāo):1. 會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù).2. 理解并會(huì)用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.3. 掌握用洛必達(dá)法則求未定式極限的方法.4. 理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值

5、的求法及其應(yīng)用.5. 會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性。(注:在區(qū)間a,b內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù)。當(dāng)時(shí),圖形是凹的;當(dāng)時(shí),圖形是凸的),會(huì)求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會(huì)描繪函數(shù)的圖形.本周主要任務(wù)是掌握分段函數(shù),反函數(shù),隱函數(shù),由參數(shù)方程確定函數(shù)的導(dǎo)數(shù)。會(huì)根據(jù)函數(shù)在一點(diǎn)的導(dǎo)數(shù)判斷函數(shù)的增減性。會(huì)應(yīng)用微分中值定理證明。會(huì)根據(jù)洛比達(dá)法則的幾種情況應(yīng)用法則求極限。掌握極值存在的必要條件,第一和第二充分條件。會(huì)計(jì)算函數(shù)的極值和最值以及函數(shù)的凸凹性。會(huì)計(jì)算函數(shù)的漸近線。會(huì)計(jì)算與導(dǎo)數(shù)有關(guān)的應(yīng)用題邊際問(wèn)題、彈性問(wèn)題、經(jīng)濟(jì)問(wèn)題和幾何問(wèn)題的最值。4 第四階段復(fù)習(xí)計(jì)劃復(fù)習(xí)高數(shù)書(shū)上冊(cè)第四章第1-3節(jié)。需達(dá)

6、到以下目標(biāo):1. 理解原函數(shù)的概念,理解不定積分的概念.2. 掌握不定積分的基本公式,掌握不定積分的性質(zhì),掌握不定積分換元積分法與分部積分法.會(huì)求簡(jiǎn)單函數(shù)的不定積分。本周主要任務(wù)是掌握不定積分的性質(zhì),不定積分的公式牢記一個(gè)函數(shù)的原函數(shù)有無(wú)窮多個(gè),注意+C,會(huì)運(yùn)用第一,第二換元法求函數(shù)的不定積分。掌握不定積分分部積分公式并應(yīng)用。5 第五階段復(fù)習(xí)計(jì)劃復(fù)習(xí)高數(shù)書(shū)上冊(cè)第五章第1-3節(jié)。達(dá)到以下目標(biāo):1. 理解定積分的幾何意義。2. 掌握定積分的性質(zhì)及定積分中值定理。3. 掌握定積分換元積分法與定積分廣義換元法.本周的主要任務(wù)是掌握不定積分的性質(zhì),會(huì)根據(jù)不定積分的性質(zhì)做題。尤其注意積分上下限互換后積分值變?yōu)槠湎喾磾?shù),定積分與變量無(wú)關(guān),可根據(jù)函數(shù)奇偶性計(jì)算定積分等性質(zhì)。6第六階段復(fù)習(xí)計(jì)劃復(fù)習(xí)高數(shù)書(shū)上冊(cè)第五章第4節(jié),第六章第2節(jié)。達(dá)到以下目標(biāo):1. 掌握積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式.2. 掌握定積分換元法與定積分廣義換元法.會(huì)求分段函數(shù)的定積分。3. 掌握用定積分計(jì)算一些幾何量(如平面圖形的面積、旋轉(zhuǎn)體的體積)。了解廣義積分與無(wú)窮限積分。本周主要任務(wù)是掌握積分上限函數(shù)的性質(zhì),掌握牛頓-萊布尼茨公式,應(yīng)用定積分換元法求定積分。會(huì)根據(jù)定積分的幾何意義計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積。

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論