新人教版七年級(jí)下數(shù)學(xué)第六章實(shí)數(shù)導(dǎo)學(xué)案_第1頁
新人教版七年級(jí)下數(shù)學(xué)第六章實(shí)數(shù)導(dǎo)學(xué)案_第2頁
免費(fèi)預(yù)覽已結(jié)束,剩余24頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、學(xué)習(xí)好資料歡迎下載13.1平方根導(dǎo)學(xué)案(制作:袁蘇明)一、教學(xué)目標(biāo)1.經(jīng)歷算術(shù)平方根概念的形成過程,了解算術(shù)平方根的概念2.會(huì)求某些正數(shù)(完全平方數(shù))的算術(shù)平方根并會(huì)用符號(hào)表示二、重點(diǎn)和難點(diǎn)1.重點(diǎn):算術(shù)平方根的概念.2.難點(diǎn):算術(shù)平方根的概念.三、自主探究學(xué)校要舉行美術(shù)作品比賽,小鷗很高興.他想裁出一塊面積為25平方分米的正方形畫布,畫 上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少分米?(一)說這塊正方形畫布的邊長應(yīng)取多少分米?你是怎么算出來的?答:因?yàn)?2=25,所以這個(gè)正方形畫布的邊長應(yīng)取5分米。(二)(自主完成下表)止方形的面積916361425邊長這個(gè)實(shí)例中的問題、 填表中

2、的問題實(shí)際上是一個(gè)問題,什么問題?它們都是已知正方形面積求邊長的問題.通過解決這個(gè)問題,我們就有了算術(shù)平方根的概念正數(shù)3的平方等于9,我們把正數(shù)3叫做9的算術(shù)平方根.正數(shù)4的平方等于16,我們把正數(shù)4叫做16的算術(shù)平方根.說說6和36這兩個(gè)數(shù)?說說1和1這兩個(gè)數(shù)?同桌之間互相說一說5和25這兩個(gè)數(shù).(同桌互相說)說了這么多,同學(xué)們大概已經(jīng)知道了算術(shù)平方根的意思.那么什么是算術(shù)平方根呢?還是先在小組里討論討論,說說自己的看法.(三)什么是算術(shù)平方根呢?如果一個(gè)正數(shù)的平方等于a,那么這個(gè)正數(shù)叫做a的算術(shù)平方根請(qǐng)大家把算術(shù)平方根概念默讀兩遍.(生默讀)如果一個(gè)正數(shù)的平方等于a,那么這個(gè)正數(shù)叫做a的算

3、術(shù)平方根.為 了書寫方便,我們把a(bǔ)的算術(shù)平方根記作a(板書:a的算術(shù)平方根記作,a).(指準(zhǔn)上圖)看到?jīng)]有?這根釣魚桿似的符號(hào)叫做根號(hào), 術(shù)平方根.a叫做被開方數(shù),a表示a的算被開方數(shù)學(xué)習(xí)好資料歡迎下載四、精講精練1、求下列各數(shù)的算術(shù)平方根:49;(2)0.0001.64(要注意解題格式,解題格式要與課本第40頁上的相同)精練2、填空:4、根據(jù)112=121,122=144,324,192=361,填空并記住下列各式:.121 =,144 =,A69 =196 =,x/225=,%/256=289 =,324=,x/361=(學(xué)生記住沒有,教師可以利用卡片進(jìn)行檢查,并要求學(xué)生課后記熟)5、辨析

4、題:張三認(rèn)為,因?yàn)椋ㄒ?)=16,所以16的算術(shù)平方根是一4你認(rèn)為卓瑪?shù)目捶▽?duì)嗎?為什么?五、我的收獲(1)因?yàn)椋ǎ?=64,所以64的算術(shù)平方根是因?yàn)?=0.25, 所以0.25的算術(shù)平方根是因?yàn)?=16= -,所以16的算術(shù)平方根是4949、求下列各式的值:(1)何=.100= ;一9一= _(5).0.01= ;,即64=,即025=.1=213=169,2 2 2 2 214=196,15=225,16=256,17=289,18=3,即學(xué)習(xí)好資料歡迎下載13.1平方根導(dǎo)學(xué)案(第2課時(shí))一、教學(xué)目標(biāo)1.通過由正方形面積求邊長,讓學(xué)生經(jīng)歷2的估值過程,加深對(duì)算術(shù)平方根概念的理解,感受無理

5、數(shù),初步了解無限不循環(huán)小數(shù)的特點(diǎn)2.會(huì)查數(shù)學(xué)用表求無理數(shù)的算術(shù)平方根二、重點(diǎn)和難點(diǎn)1.重點(diǎn):感受無理數(shù)2難點(diǎn):感受無理數(shù).三、自主探究1.填空:如果一個(gè)正數(shù)的平方等于a,那么這個(gè)正數(shù)叫做a的_ ,記作_2.填空:(1)因?yàn)?=36,所以36的算術(shù)平方根是,即36=;因?yàn)椋╛99_)2=,所以的算術(shù)平方根是,即J9=646464_因?yàn)?=0.81,所以0.81的算術(shù)平方根是,即U0.81=因?yàn)?=0.572,所以0.572的算術(shù)平方根是,即J0.572(二)(看下圖)這個(gè)正方形的面積等于4,它的邊長等于多少?誰會(huì)用算術(shù)平方根來說這個(gè)正方形邊長和面積的關(guān)系?這個(gè)正方形的面積等于1,它的邊長等于多少

6、?用算術(shù)平方根來說這個(gè)正方形邊長和面積的關(guān)系?(指準(zhǔn)圖)這個(gè)正方形的邊長等于面積1的算術(shù)平方根,也就是邊長=1,-, 1等于多少?(看下圖)這個(gè)正方形的面積等于2,它的邊長等于什么?因?yàn)檫呴L等于面積的算術(shù)平方根,所以邊長等于2(板書:邊長=2).(上面三個(gè)圖的位置如下所示)邊長=1 = 1邊長=2.4=2,.1=1,那么、2等于多少呢?求2等于多少,怎么求?學(xué)習(xí)好資料歡迎下載在1和2之間的數(shù)有很多,到底哪個(gè)數(shù)等于2呢?我們怎么才能找到這個(gè)數(shù)呢?我們可以這樣來考慮問題,等于2的那個(gè)數(shù),它的平方等于多少?第一條線索是那個(gè)數(shù)在1和2之間,第二條線索是那個(gè)數(shù)的平方恰好等于2.根據(jù)這兩條線索,我們來找等

7、于2的那個(gè)數(shù).我們在1和2之間找一個(gè)數(shù),譬如找1.3,(板書:1.32= )1.3的平方等于多少?(師生共 同用計(jì)算器計(jì)算)1.69不到2,說明1.3比我們要找的那個(gè)數(shù)小.1.3小了,那我們找1.5,1.5的平方等于多 少?(師生共同用計(jì)算器計(jì)算)2.25超過2,說明1.5比我們要找的那個(gè)數(shù)大.找1.3小了, 找1.5又大了,下面怎么找呢?大家用計(jì)算器, 算一算,找一找,哪個(gè)數(shù)的平方恰好等于2?2等于1.41421356點(diǎn)點(diǎn)點(diǎn),可見是一個(gè)小數(shù),這個(gè)小數(shù)與我們以前學(xué)過的小數(shù)相比有點(diǎn)不同,有什么不同呢?第一,這個(gè)小數(shù)是無限小數(shù)(板書:無限).,2是無限小數(shù),又是不循環(huán)小數(shù),所以2是一個(gè)無限不循環(huán)小

8、數(shù).除了2, 還有別的無限不循環(huán)小數(shù)嗎?無限不循環(huán)小數(shù)還有很多很多,、J5、J6、7都是無限不循環(huán)小數(shù)(板書:3、, 5、67都是無限不循環(huán)小數(shù)).那怎么求3、.5、6、.7這些無限不循環(huán)小數(shù)的值呢?我們可以利用計(jì)算器來求.四、精講精練1、查數(shù)學(xué)用表求下列各式的值:(1)J3(精確到0.001);(2)J3136.(按鍵時(shí),教師要領(lǐng)著學(xué)生做;解題格式要與課本上的相同)2、填空:(1)面積為9的正方形,邊長=、.,=;(2)面積為7的正方形,邊長= (利用計(jì)算器求值,精確到0.001).3、用計(jì)算器求值:(1)、1849=;(2).86.8624=;(3).,6 (精確到0.01).4、選做題:

9、(1)查表計(jì)算,并將計(jì)算結(jié)果填入下表:J0.62 5J6.25J62.5J6250J6250025(2)觀察上表,你發(fā)現(xiàn)規(guī)律了嗎?根據(jù)你發(fā)現(xiàn)的規(guī)律,不用計(jì)算器,直接寫出下列各式的值:62500=,. 6250000=,.0.0625=,. 0.000625=.五、課堂小結(jié)學(xué)習(xí)好資料歡迎下載六、我的收獲13.1平方根導(dǎo)學(xué)案(第3課時(shí))一、教學(xué)目標(biāo)1、 經(jīng)歷平方根概念的形成過程,了解平方根的概念,會(huì)求某些正數(shù)(完全平方數(shù))的平方根2、 經(jīng)歷有關(guān)平方根結(jié)論的歸納過程,知道正數(shù)有兩個(gè)平方根,它們互為相反數(shù),0的平方 根是0,負(fù)數(shù)沒有平方根二、重點(diǎn)和難點(diǎn)1、 重點(diǎn):平方根的概念.2、 難點(diǎn):歸納有關(guān)平方

10、根的結(jié)論.三、自主探究(一)基本訓(xùn)練,鞏固舊知1、 填空:如果一個(gè)的平方等于a,那么這個(gè)叫做a的算術(shù)平方根,a的算術(shù)平方根記作.2、 填空:面積為16的正方形,邊長=、.=;(2)面積為15的正方形,邊長=、. (利用計(jì)算器求值,精確到0.01).3、 填空:(1)因?yàn)?.72=2.89,所以2.89的算術(shù)平方根等于,即、,2.89=;(2)因?yàn)?.732=2.9929,所以3的算術(shù)平方根約等于,即.3沁.(二)什么是平方根呢?大家先來思考這么一個(gè)問題(三) 如果一個(gè)正數(shù)的平方等于9,這個(gè)正數(shù)是多少?如果一個(gè)數(shù)的平方等于9,這個(gè)數(shù)是多少?和算術(shù)平方根的概念類似,(指準(zhǔn)32=9)我們把3叫做9的

11、平方根,(指準(zhǔn)(-3)2=9)把一3也叫做9的平方根,也就是3和一3是9的平方根。我們再來看幾個(gè)例子.2x1636491425x同學(xué)們大概已經(jīng)明白了平方根的意思.平方根的概念與算術(shù)平方根的概念是類似的,誰會(huì)用學(xué)習(xí)好資料歡迎下載一句話概括什么是平方根?學(xué)習(xí)好資料歡迎下載平方根:如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)叫做a的平方根.平方根概念與算術(shù)平方根概念只有一點(diǎn)點(diǎn)區(qū)別,哪一點(diǎn)點(diǎn)區(qū)別?四、精講精練1、求下面各數(shù)的平方根:并寫出解答過程(1)100;0.25;(3)0;(4)4;小組討論:正數(shù)有 平方根。平方根有什么關(guān)系?0的平方根有個(gè),平方根是負(fù)數(shù)平方根五、精練1.填空:(1)因?yàn)?)2=49,所以

12、49的平方根是;即(2)因?yàn)?)2=0,所以0的平方根是;即(3)因?yàn)?)2=1.96,所以1.96的平方根是;即2.填空:(1) 121的平方根是,121的算術(shù)平方根是;(2) 0.36的平方根是,0.36的算術(shù)平方根是;(3)的平方根是8和一8,的算術(shù)平方根是8;333的平方根是5和一5,的算術(shù)平方根是5.225的平方根是一5;5是25的一個(gè)平方根;(6)25的算術(shù)平方根是5;(8)(-5)2的算術(shù)平方根是5.學(xué)習(xí)好資料歡迎下載()(3)5的平方是25;()(5)25的平方根是5;()(7)52的平方根是土5;()七、我的收獲3.判斷題:對(duì)的畫“V,錯(cuò)的畫X,錯(cuò)的請(qǐng)更正.(1)0的平方根是

13、0學(xué)習(xí)好資料歡迎下載13.2立方根導(dǎo)學(xué)案(制作:袁蘇明)一、學(xué)習(xí)目標(biāo):1、 了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根2、 了解開立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求某些數(shù)的立方根3、 體會(huì)一個(gè)數(shù)的立方根的惟一性,分清一個(gè)數(shù)的立方根與平方根的區(qū)別。二、重點(diǎn)難點(diǎn)重點(diǎn):立方根的概念和求法。難點(diǎn):立方根與平方根的區(qū)別。三、自主探究1、平方根是如何定義的?平方根有哪些性質(zhì)?2、 問題:要制作一種容積為27 m3的正方體形狀的包裝箱,這種包裝箱的邊長應(yīng)該是3、 思考:(1)的立方等于-8?(2)如果上面問題中正方體的體積為5cm3,正方體的邊長又該是4、 立方根的概念:如果一個(gè)數(shù)的立方等于a,這

14、個(gè)數(shù)就叫做a的.(也叫做數(shù)a的).換句話說,如果,那么x叫做a的立方根或三次方根.記作:.讀作“”,其中a是,3是,且根指數(shù)3省略(填能或不能),否則與平方根混淆.5、 開立方求一個(gè)數(shù)的的運(yùn)算叫做開立方,與開立方互為逆運(yùn)算(小組合作學(xué)習(xí))6、 立方根的性質(zhì)(1)教科書49頁探究(2) 總結(jié)歸納:正數(shù)的立方根是數(shù),負(fù)數(shù)的立方根是數(shù),0的立方根是(3) 思考:每一個(gè)數(shù)都有立方根嗎?一個(gè)數(shù)有幾個(gè)立方根呢?(4)平方根與立方根有什么不同?被開方數(shù)平方根立方根正數(shù)負(fù)數(shù)零四、精講精練學(xué)習(xí)好資料歡迎下載例1、求下列各式的值:學(xué)習(xí)好資料歡迎下載(1)364;例2、求滿足下列各式的未知數(shù)x:3(1)x =0.0

15、08練習(xí)1.判斷正誤:(1)、25的立方根是5;()(2)、互為相反數(shù)的兩個(gè)數(shù),它們的立方根也互為相反數(shù);()(3)、任何數(shù)的立方根只有一個(gè);()(4)、如果一個(gè)數(shù)的平方根與其立方根相同,則這個(gè)數(shù)是1;()(5) 、如果一個(gè)數(shù)的立方根是這個(gè)數(shù)的本身,那么這個(gè)數(shù)一定是零;(6) 、一個(gè)數(shù)的立方根不是正數(shù)就是負(fù)數(shù).()(7)、-64沒有立方根.()2、(1) 64的平方根是_ 立方根是_.(2)_站27勺立方根是_.-幼7是的立方根.(4)_若- x2= 9則x=_,若,_x3則9=(5)_若jx2, =_x則x的取值范圍是,若x有意義,則3、計(jì)算:(1)3:1 2;4、已知x-2的平方根是4,2

16、x-y+12的立方根是4,求(x+y刊的值.五、課堂小結(jié):六、我的收獲的取值范圍是學(xué)習(xí)好資料歡迎下載13.2立方根導(dǎo)學(xué)案(制作:袁蘇明)、引入學(xué)習(xí)好資料歡迎下載1.立方根及開立方的概念2.平方根與立方根有什么不同?被開方數(shù)平方根立方根正數(shù)負(fù)數(shù)零3、(1) 64的平方根是_ 立方根是_.*27的立方根是_.(3)丁7是_ 的立方根23(4)_若(x ) =9則x=_ ,若 ( x)則9c= .(5)若廠2,則x的取值范圍是_Px = X二、 自主探究1、 完成教科書78頁探究,總結(jié)規(guī)律求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的的立方根,再取其,即思考:立方根是它本身的數(shù)是,平方根是它本身的數(shù)是2、 一

17、些計(jì)算機(jī)設(shè)有鍵,用它可以求出一個(gè)立方根(或其近似值)。有些計(jì)算器需要用鍵求一個(gè)數(shù)的立方根。(3)一1V 1000學(xué)習(xí)好資料歡迎下載1、了解實(shí)數(shù)的意義,能對(duì)實(shí)數(shù)按要求進(jìn)行分類。2、了解實(shí)數(shù)范圍內(nèi),相反數(shù)、倒數(shù)、絕對(duì)值的意義。3、- 了解數(shù)軸上的點(diǎn)與實(shí)數(shù)對(duì)應(yīng),能用數(shù)軸上的點(diǎn)來表示無理數(shù)。二、 重點(diǎn)與難點(diǎn)學(xué)習(xí)重點(diǎn):理解實(shí)數(shù)的概念。學(xué)習(xí)難點(diǎn):正確理解實(shí)數(shù)的概念。三、 自主探究1、填空:(有理數(shù)的兩種分類)有理數(shù)有理 丿數(shù)2、使用計(jì)算器計(jì)算,把下列有理數(shù)寫成小數(shù)的形式,你有什么發(fā)現(xiàn)?-34791153- - - ? , ? ? ?581199(二)、探究新知1、歸納: 任何一個(gè)有理數(shù)都可以寫成 _小數(shù)或

18、_小數(shù)的形式。反過來,任何_小數(shù)或_ 小數(shù)也都是有理數(shù)觀察通過前面的探討和學(xué)習(xí),我們知道,很多數(shù)的_ 根和_根都是_小數(shù), _小數(shù)又叫無理數(shù),兀=3.14159265卅也是無理數(shù)結(jié)論:_和_稱為實(shí)數(shù)或_買數(shù) Y像有理數(shù)一樣,無理數(shù)也有正負(fù)之分。 -例如2,33, 是_ 無理數(shù),-42,r_ (-逅,-兀是 無理數(shù)。由于非0有理數(shù)和無理數(shù)都有正負(fù)之分,I_所以實(shí)數(shù)也可以這樣分類:實(shí)數(shù).I 3、我們知道,每個(gè)有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示。無理數(shù)是否也可以用數(shù)軸上的點(diǎn)來表示呢?(1)如圖所示,直徑為1個(gè)單位長度的圓從原點(diǎn)沿?cái)?shù)軸向右滾動(dòng)一周,圓上的一點(diǎn)由原點(diǎn)到達(dá)點(diǎn)0,點(diǎn)0的坐標(biāo)是多少?你能舉出一些無

19、理數(shù)嗎?2、試一試把實(shí)數(shù)分類學(xué)習(xí)好資料歡迎下載學(xué)習(xí)好資料歡迎下載從圖中可以看出00的長時(shí)這個(gè)圓的周長 _,點(diǎn)0的坐標(biāo)是 _這樣,無理數(shù)可以用數(shù)軸上的點(diǎn)表示出來(2)丨10- 3-2,以原點(diǎn)為Ml心.止方形對(duì)角線為半徑圖弧*與正半軸的交點(diǎn)就表示_:與賃半軸的交點(diǎn)就喪示_(為什么?理數(shù)都可以用數(shù)軸上的 _表示出來,這就是說,數(shù)軸上的點(diǎn)有些表示 _有些表示_當(dāng)從有理數(shù)擴(kuò)充到實(shí)數(shù)以后, 實(shí)數(shù)與數(shù)軸上的點(diǎn)就是 _的,即每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的 _ 來表示;反過來,數(shù)軸上的 _ 都是表示一個(gè)實(shí)數(shù)與有理數(shù)一樣,對(duì)于數(shù)軸上的任意兩個(gè)點(diǎn),右邊的點(diǎn)所表示的實(shí)數(shù)總比左邊的點(diǎn)表示的實(shí)數(shù)_當(dāng)數(shù)從有理數(shù)擴(kuò)充到實(shí)數(shù)以后,

20、有理數(shù)關(guān)于相反數(shù)和絕對(duì)值的意義同樣適合于實(shí)數(shù)嗎?總結(jié) 數(shù)a的相反數(shù)是 _ ,這里a表示任意 _ 。一個(gè)正實(shí)數(shù)的絕對(duì)值是_; 一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的 _ ;0的絕對(duì)值是 _四、精講精練 例1、把下列各數(shù)分別填入相應(yīng)的集合里:38, .3, -3.141,絲,-2,-3.2,0.1010010001|此1.414,-0.020202|1|,-. 73 78正有理數(shù)負(fù)有理數(shù)正無理數(shù)負(fù)無理數(shù)2、下列實(shí)數(shù)中是無理數(shù)的為(的相反數(shù)是,絕對(duì)值總結(jié)事實(shí)上,每一個(gè)無)A. 0 B.-3.5C.2D. .9學(xué)習(xí)好資料歡迎下載4、絕對(duì)值等于的嘗 數(shù)是,的平7方是6、求絕對(duì)值1 L 1 1/2 |=|兀一34 1練

21、習(xí)(一)、判斷下列說法是否正確:1.實(shí)數(shù)不是有理數(shù)就是無理數(shù)。()2.無限小數(shù)都是無理數(shù)。()3.無理數(shù)都是無限小數(shù)。()4.帶根號(hào)的數(shù)都是無理數(shù)。()5.兩個(gè)無理數(shù)之和一定是無理數(shù)。()6.所有的有理數(shù)都可以在數(shù)軸上表示,反過來,數(shù)軸上所有的點(diǎn)都表示有理數(shù)。(二)、填空1、1:-2、i .5、比較大小73L4_2兀一3J4學(xué)習(xí)好資料歡迎下載3、比較大小4、|皿-辰卜_-3的絕對(duì)值是_五、課堂小結(jié)這節(jié)課你有什么新發(fā)現(xiàn)?知道了哪些新知識(shí)?無理數(shù)的特征:1.圓周率;及一些含有;的數(shù)2.開不盡方的數(shù)3.無限不循環(huán)小數(shù)注意:帶根號(hào)的數(shù)不一定是無理數(shù)六、作業(yè)1、把下列各數(shù)填入相應(yīng)的集合內(nèi):-吻153 0

22、3有理數(shù)集合無理數(shù)集合整數(shù)集合分?jǐn)?shù)集合學(xué)習(xí)好資料歡迎下載實(shí)數(shù)集合3、已知四個(gè)命題,正確的有()有理數(shù)與無理數(shù)之和是無理數(shù)無理數(shù)與無理數(shù)之積是無理數(shù)有理數(shù)與無理數(shù)之積是無理數(shù)無理數(shù)與無理數(shù)之積是無理數(shù)A. 1個(gè)B. 2個(gè)C. 34、若實(shí)數(shù)a滿足=-1,則(aA. a . 0 B. a : 0 C.5、下列說法正確的有()不存在絕對(duì)值最小的無理數(shù)不存在與本身的算術(shù)平方根相等的數(shù) 非負(fù)實(shí)數(shù)中最小的數(shù)是0A. 2個(gè)B. 3個(gè)C. 46、J3-2的相反數(shù)是_個(gè)D.4個(gè))a _ 0D.a豈0不存在絕對(duì)值最小的實(shí)數(shù)比正實(shí)數(shù)小的數(shù)都是負(fù)實(shí)數(shù)個(gè)D.5個(gè),絕對(duì)值是_I找一代卜_ 若x2=(_73j,則x =_3_

23、科_7、J2x4+J42x是實(shí)數(shù),則x=_13.3實(shí)數(shù)導(dǎo)學(xué)案(制作:袁蘇明)、學(xué)習(xí)目標(biāo)2、下列各數(shù)中,是無理數(shù)的是()A.-1.732B.1.414C.、3 D.3.14學(xué)習(xí)好資料歡迎下載學(xué)習(xí)好資料歡迎下載1、了解實(shí)數(shù)范圍內(nèi),相反數(shù)、倒數(shù)、絕對(duì)值的意義。2、會(huì)按要求用近似有限小數(shù)代替無理數(shù),再進(jìn)行計(jì)算。1、重點(diǎn)與難點(diǎn)重點(diǎn):在實(shí)數(shù)內(nèi)會(huì)求一個(gè)數(shù)的相反數(shù)、倒數(shù)、絕對(duì)值。 難點(diǎn):簡單的無理數(shù)計(jì)算。三、自主探究學(xué)前準(zhǔn)備1、用字母來表示有理數(shù)的乘法交換律、乘法結(jié)合律、乘法分配律2、用字母表示有理數(shù)的加法交換律和結(jié)合律3、有理數(shù)的混合運(yùn)算順序自主探索獨(dú)立閱讀,自習(xí)教材總結(jié)當(dāng)數(shù)從有理數(shù)擴(kuò)充到實(shí)數(shù)以后,1、數(shù)a

24、的相反數(shù)是;2、 一個(gè)正實(shí)數(shù)的絕對(duì)值是它;一個(gè)負(fù)實(shí)數(shù)的絕對(duì)值是它的;0的絕對(duì)值是。則及運(yùn)算性質(zhì)等同樣適用。四、精講精練例1、計(jì)算下列各式的值:3 - 2- 七3、3 2.3=32-2(加法結(jié)合律)=弟-0=它3總結(jié) 實(shí)數(shù)范圍內(nèi)的運(yùn)算方法及運(yùn)算順序與在有理數(shù)范圍內(nèi)都是一樣的練習(xí)1. 5-(精確到0.01)2 .3、2(結(jié)果保留3個(gè)有效數(shù)字)總結(jié) 在實(shí)數(shù)運(yùn)算中,當(dāng)遇到無理數(shù)并且需要求出結(jié)果的近似值時(shí),可以按照所要求的精確 度用相應(yīng)的近似有限小數(shù)去代替無理數(shù),再進(jìn)行計(jì)算計(jì)算3、實(shí)數(shù)之間不僅可以進(jìn)行加、減、乘、除(除數(shù)不為0)、乘方運(yùn)算,而且正數(shù)及0可以進(jìn)行開方運(yùn)算,任意一個(gè)實(shí)數(shù)可以進(jìn)行開立方運(yùn)算。在

25、進(jìn)行實(shí)數(shù)的運(yùn)算時(shí), 有理數(shù)的運(yùn)算法3、討論 下列各式錯(cuò)在哪里?211、-323 “ 99 3 “ 3 = 9躬晶=啟品、;1一 刀=1- 2、當(dāng)x = _.2時(shí),=0 x 2=3 2 - 3(分配律)=5、3學(xué)習(xí)好資料歡迎下載2232| |.3-、2+2&-2-1學(xué)習(xí)好資料歡迎下載應(yīng)用遷移,鞏固提高 2 _ 5一、_5 影 (精確到0.01)(2)aa)(精確到0.01)例3已知實(shí)數(shù)a、b c在數(shù)軸上的位置如下,化簡a + b +|a + b J(c a )2 2啟cbOa例4計(jì)算Ll2丿l2丿13丿五、課堂小結(jié)1、實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。2、實(shí)數(shù)的相反數(shù)和絕對(duì)值的意義六、作業(yè)巳知a、b、c在

26、數(shù)軸上如圖, 化簡J02- a十b + J( c_ a , + b + c baOcJQ在兩個(gè)連續(xù)整數(shù)a和b之間,即a八10 ::: b,那么a、b的值是(1)2、3、已知a、b、c在數(shù)軸上如圖,化簡 肩-6、1、-3 - 2的相反數(shù)是,的相反數(shù)是39學(xué)習(xí)好資料歡迎下載課題:實(shí)數(shù)復(fù)習(xí)導(dǎo)學(xué)案(制作:袁蘇明)、知識(shí)結(jié)構(gòu)學(xué)習(xí)好資料歡迎下載十、互為逆運(yùn)算乘方- 開平方、-、開方開立方-、二、知識(shí)回顧 算術(shù)平方根的定義: 平方根的定義:平方根的性質(zhì):立方根的定義: 立方根的性質(zhì):2、大于-.17而小于、11的所有整數(shù)為 幾個(gè)基本公式:(注意字母a的取值范圍)(a)2=;,a2=3a3=;(3a)3=;3

27、- a=_ _練習(xí):1、若 acO,求 J a2+#a3的值;2、若 m c n,求 Q(mn )2+3(n_ m)3的值無理數(shù)的定義:”_實(shí)數(shù)的定義:實(shí)數(shù)與上的點(diǎn)是- 對(duì)應(yīng)的-練習(xí):1、判斷下列說法是否正確:_*、-_1實(shí)數(shù)不是有理數(shù)就是無理數(shù)。()實(shí)數(shù)2無限小數(shù)都是無理數(shù)。()丿-3無理數(shù)都是無限小數(shù)。()、._4.帶根號(hào)的數(shù)都是無理數(shù)。()5兩個(gè)無理數(shù)之和一定是無理數(shù)。()-6.所有的有理數(shù)都可以在數(shù)軸上表示,反過來,-數(shù)軸上所有的點(diǎn)都表示有理數(shù)。 ()LL7.平面直角坐標(biāo)系中的點(diǎn)與有序?qū)崝?shù)對(duì)之間是 對(duì)應(yīng)的。()2、把下列各數(shù)中,有理數(shù)為;無理數(shù)為2、(1)9(3y)2=4 (2)27(x+3$ +125 = 0(3) 苗 _ 2 悶 + J 2 + V3 _ 駅四、知識(shí)提高_(dá) _1、已知3:1.732,30:5.477, (1)300 :; (

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論