高一數(shù)學(xué)向量的坐標(biāo)表示及運算ppt課件_第1頁
高一數(shù)學(xué)向量的坐標(biāo)表示及運算ppt課件_第2頁
高一數(shù)學(xué)向量的坐標(biāo)表示及運算ppt課件_第3頁
高一數(shù)學(xué)向量的坐標(biāo)表示及運算ppt課件_第4頁
高一數(shù)學(xué)向量的坐標(biāo)表示及運算ppt課件_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、1、平面向量的坐標(biāo)表示與平面向量分、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?、平面向量的坐標(biāo)是如何定義的?3、平面向量的運算有何特點?、平面向量的運算有何特點? 類似地,由平面向量的分解定理,對于平面上的類似地,由平面向量的分解定理,對于平面上的任意向量任意向量 ,均可以分解為不共線的兩個向量,均可以分解為不共線的兩個向量 和和 使得使得a a1 11 1a a2 22 2 a a= =a a1 11 1a a+2 22 2 a a 在不共線的兩個向量中,垂直是一種重要是在不共線的兩個向量中,垂直是一種重要是情形,把一個向量分解為兩個互相垂直的

2、向量,情形,把一個向量分解為兩個互相垂直的向量,叫做把向量叫做把向量正交分解正交分解。 我們知道,在平面直角坐標(biāo)系,我們知道,在平面直角坐標(biāo)系,每一個點都可用一對有序?qū)崝?shù)(即它每一個點都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,對直角坐標(biāo)平面內(nèi)的的坐標(biāo))表示,對直角坐標(biāo)平面內(nèi)的每一個向量,如何表示?每一個向量,如何表示? 在平面上,如果選取互相垂直的向量作為在平面上,如果選取互相垂直的向量作為基底時,會為我們研究問題帶來方便?;讜r,會為我們研究問題帶來方便。 我們把(我們把(x,y)x,y)叫做向量叫做向量a a 的的(直角)坐標(biāo),記作(直角)坐標(biāo),記作 a=(xa=(x,y),y), 其中其中x

3、 x叫做叫做a a 在在x x軸上的坐標(biāo),軸上的坐標(biāo),y y叫做叫做a a在在y y軸上的坐標(biāo),(軸上的坐標(biāo),(x ,yx ,y)叫做叫做向量的坐標(biāo)表示。向量的坐標(biāo)表示。ayjiO圖 1xxiyj a=xi+yj(1,0)(0,1)(0,0)i=i=j=j=0=0=其中其中i,j為向量為向量 i,j ayjiO圖 1xxiyj其中其中xi為為x i,yj為為y jyxOyxjA(x,y)a如圖,在直角坐標(biāo)平面內(nèi),以原如圖,在直角坐標(biāo)平面內(nèi),以原點點O為起點作為起點作OA=a,則點,則點A的位的位置由置由a唯一確定。唯一確定。設(shè)設(shè)OA=xi+yj,則向量,則向量OA的坐標(biāo)的坐標(biāo)(x,y)就是點就

4、是點A的坐標(biāo);反過來,的坐標(biāo);反過來,點點A的坐標(biāo)(的坐標(biāo)(x,y)也就是向量也就是向量OA的坐標(biāo)。因此,在平面直角坐標(biāo)的坐標(biāo)。因此,在平面直角坐標(biāo)系內(nèi),每一個平面向量都可以用系內(nèi),每一個平面向量都可以用一對實數(shù)唯一表示。一對實數(shù)唯一表示。i例例1 如圖,用基底如圖,用基底i,j分別表示向量分別表示向量a、b、c、d ,并求出它們的坐標(biāo)。并求出它們的坐標(biāo)。jyxOiaA1AA2bcd解:由圖解:由圖3可知可知a=AA1+AA2=2i+3j, a=(2,3) 同理,同理,b=-2i+3j=(-2,3) c=-2i-3j=(-2,-3)d=2i-3j=(2,-3)已知已知 , 你能得出你能得出 ,

5、 ,的坐標(biāo)嗎?的坐標(biāo)嗎?1 11 1a=(x ,y )a=(x ,y )2 22 2b=(x ,y )b=(x ,y )a+ba+b-a ba b a a已知,已知,a=(x1,y1),b=(x2,y2),則,則 a+b=(x1i+y1j)+(x2i+y2j) =(x1+x2)i+(y1+y2)j即即 a+b=(x1+x2,y1+y2)同理可得同理可得 a-b=(x1-x2,y1-y2)這就是說,兩個向量和與差的坐標(biāo)分別等這就是說,兩個向量和與差的坐標(biāo)分別等于這兩個向量相應(yīng)坐標(biāo)的和與差。于這兩個向量相應(yīng)坐標(biāo)的和與差。結(jié)論:結(jié)論: 一個向量的坐標(biāo)等于表示此向量一個向量的坐標(biāo)等于表示此向量的有向線

6、段的終點的坐標(biāo)減去始點的的有向線段的終點的坐標(biāo)減去始點的坐標(biāo)。坐標(biāo)。yxOB(x2,y2)A(x1,y1)如圖,已知如圖,已知A(x1,y1),B(x2,y2), 則則 AB= OB - OA = (x2,y2) - (x1,y1) = (x2-x1,y2-y1)yxOB(x2,y2)A(x1,y1)你能在圖中標(biāo)出坐標(biāo)為你能在圖中標(biāo)出坐標(biāo)為 的的P點嗎?點嗎?21212121(x -x ,y -y )(x -x ,y -y )P例例2 已知已知a(2,1),),b(3,4),求),求a+b,ab,3a+4b例例3 已知平行四邊形已知平行四邊形ABCD的三個定點的三個定點A、B、C的坐標(biāo)分別為(

7、的坐標(biāo)分別為(2,1)、)、(1,3)、()、(3,4),求頂點),求頂點D的坐標(biāo)的坐標(biāo)例例4 已知平行四邊形已知平行四邊形ABCD的三個定點的三個定點A、B、C的坐標(biāo)分別為(的坐標(biāo)分別為(2,1)、()、(1,3)、()、(3,4),求頂點),求頂點D的坐標(biāo)的坐標(biāo) 平行四邊形平行四邊形ABCD的對角線交于點的對角線交于點O,且且知道知道AD=(3,7),), AB=(-2,1),求),求OB坐標(biāo)。坐標(biāo)。問題:問題:共線向量如何用坐標(biāo)來共線向量如何用坐標(biāo)來表示呢?表示呢?消去消去后得后得 也就是說,也就是說,a/b(b0)的等價表示是的等價表示是 x1y2-x2y1=0 x1y2-x2y1=0練習(xí):下列向量組中,能作為表示它練習(xí):下列向量組中,能作為表示它們所在平面內(nèi)所有向量的基底,正確們所在平面內(nèi)所有向量的基底,正確的有(的有( )(1)e1=( -1 , 2 ),e2=( 5 , 7 )(2)e1=( 3 , 5 ),e2=( 6 , 10 )(3)e1=( 2 , -3 ),e2=( 1/2 , -3/4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論