6.3一次函數(shù)的圖像_第1頁
6.3一次函數(shù)的圖像_第2頁
6.3一次函數(shù)的圖像_第3頁
6.3一次函數(shù)的圖像_第4頁
6.3一次函數(shù)的圖像_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、初中數(shù)學(xué)八年級上冊初中數(shù)學(xué)八年級上冊(蘇科版)(蘇科版)6.3 一次函數(shù)的圖像(一次函數(shù)的圖像(2)華士實驗中學(xué)八年級備課組華士實驗中學(xué)八年級備課組 1、畫正比例函數(shù)、畫正比例函數(shù)ykx的圖象,通常?。ǖ膱D象,通常?。?,_)和()和(1,_)兩點,再)兩點,再過這兩點畫直線;畫一次函數(shù)過這兩點畫直線;畫一次函數(shù)ykxb的圖象,通常選擇?。ǖ膱D象,通常選擇?。?,_)和(和(_,0),再過這兩點作直線),再過這兩點作直線2、函數(shù)、函數(shù)y 的圖像與的圖像與x軸交點坐標(biāo)為軸交點坐標(biāo)為_,與,與y軸的交點坐標(biāo)軸的交點坐標(biāo)為為_3、如果一次函數(shù)、如果一次函數(shù)y=kx-3k+6的圖象經(jīng)過原點,那么的圖象

2、經(jīng)過原點,那么k的值為的值為_4、如圖,已知線段、如圖,已知線段AB,A(1,0),),B(0,2),將),將 線段線段 AB向上平移向上平移2個長度單位得到線段個長度單位得到線段A1B1, 則則 A1( , ),B1( , )。知識回顧知識回顧A(1,0)B(0,2)xyoB1A11 20 4223xb bbk- -0 0k k(-3, 0)(0, 2)2 2活動一活動一 【問題【問題】在同一坐標(biāo)系中畫出在同一坐標(biāo)系中畫出y = x1, y = 2x1, y = x1,y = 2x1的圖象。的圖象。xyO1- 112- 1y = x1y = 2x1y = 2x1y = x11 12 21 1

3、3 31 10 01 1-1-1活動一活動一 【問題【問題】在同一坐標(biāo)系中畫出在同一坐標(biāo)系中畫出y = x1, y = 2x1, y = x1, y = 2x1的圖象。的圖象。xyO1- 112- 1y = x1y = 2x1 直線直線 y = x1, y = 2x1的的圖象,由左到右逐漸圖象,由左到右逐漸 (填(填上升、下降)因此,上升、下降)因此,y 隨隨 x 的增的增大而大而 (填增大、減小)(填增大、減?。?y = 2x1y = x1上升上升增大增大數(shù)形結(jié)合數(shù)形結(jié)合的思想的思想活動一活動一 【問題【問題】在同一坐標(biāo)系中畫出在同一坐標(biāo)系中畫出y = x1,y = x1, y = 2x1,

4、y = 2x1的圖象。的圖象。xyO1- 112- 1y = x1y = 2x1 直線直線y = x1, y = 2x1的圖象,的圖象,由左到右逐漸由左到右逐漸 (填上升、下降)(填上升、下降)因此,因此,y 隨隨x的增大而的增大而 (填增大、(填增大、減?。p小) 直線直線y = x1, y = 2x1的圖的圖象,由左到右逐漸象,由左到右逐漸 (填上升、下降)(填上升、下降)因此,因此,y隨隨x的增大而的增大而 (填增大、(填增大、減小)減?。┥仙仙龃笤龃髖 = 2x1y = x12下降下降減小減小活動一活動一 【問題【問題】在同一坐標(biāo)系中畫出在同一坐標(biāo)系中畫出y = x1, y = 2

5、x1, y = x1, y = 2x1的圖象。的圖象。xyO1- 112- 1y = x1y = x1y = 2x1y = 2x1 一次函數(shù)一次函數(shù)y = kxy = kxb b中,中,k k的正負(fù)對的正負(fù)對函數(shù)圖象有什么影響?函數(shù)圖象有什么影響? 當(dāng)當(dāng)k k0 0時,直線時,直線y = kxy = kxb b由左到右由左到右逐漸上升,逐漸上升,y y隨隨x x的增大而增大。的增大而增大。 當(dāng)當(dāng)k k0 0時,直線時,直線y = kxy = kxb b 由左到由左到右逐漸下降,右逐漸下降,y y隨隨x x的增大而減小。的增大而減小。一次函數(shù)一次函數(shù)y ykxkxb b的性質(zhì):的性質(zhì):特殊到一特

6、殊到一般的思想般的思想(1).下列函數(shù)中,下列函數(shù)中,y的值隨的值隨x值的增大而增大的值的增大而增大的函數(shù)是函數(shù)是 ( )A.y=-2x B.y=-2x+1C.y=x-2 D.y=-x-2(2). 對于函數(shù)對于函數(shù)y=-3x,y的值隨的值隨x值的增大而值的增大而 C減小減小注:一次函數(shù)注:一次函數(shù)y ykxkxb b的增減性只與的增減性只與常數(shù)常數(shù)k k有關(guān),與另一個常數(shù)有關(guān),與另一個常數(shù)b無關(guān)。無關(guān)。xy20.x -2-1012y=y=xy=y=x+2+2 y=y=x-2-2 -20-3-11-402-213-1240.y=y=x.y=y=x+2+2y=y=x-2-2 1. 正比例函數(shù)正比例

7、函數(shù)y=y=x與一次函數(shù)與一次函數(shù)y=y=x+2 +2 、y=y=x-2-2圖象圖象 有什么位置關(guān)系?有什么位置關(guān)系?觀察與比較觀察與比較活動二活動二【問題】用描點法在同一坐標(biāo)系中畫出函數(shù)【問題】用描點法在同一坐標(biāo)系中畫出函數(shù)y =x, y =x2 ,y =x-2的圖象。的圖象。 y=y=xy=y=x+2+2y=y=x-2-2y30 x2活動二活動二x -2-1012y=y=xy=y=x+2+2 y=y=x-2-2 -20-3-11-402-213-1240比較它們函數(shù)的比較它們函數(shù)的表達(dá)表達(dá)式式(表格)(表格)與與圖象圖象,你能解你能解釋這是為什么嗎?釋這是為什么嗎? 直線直線y=y=x上的

8、上的所有點所有點都向上平移了都向上平移了2 2個單位個單位就就形成了另一條直線形成了另一條直線y=y=x+ +2 2 直線直線y=y=x上的上的所有點所有點都向下平移了都向下平移了2 2個單位個單位就就形成了另一條直線形成了另一條直線y=y=x- -2 2 3. 3.你能說出你能說出直線直線y=y=- -x+2+2與直線與直線y=y=- -x有什么有什么位置位置關(guān)系關(guān)系?xy20.y=x.y=x+2y=x-22活動三活動三 聯(lián)系前面問題,考慮直線聯(lián)系前面問題,考慮直線y = ky = kxb b與直線與直線y= ky= kx有有什么關(guān)系?什么關(guān)系? 直線直線 y = kxb(k0)可以看作)可

9、以看作是直線是直線 y = kx沿沿y軸軸向上(向上( b0)或或向下(向下(b0)平移平移 單位長單位長度而得到。度而得到。| b |思考:不畫圖象,僅以函數(shù)解析式,你能否判斷直線思考:不畫圖象,僅以函數(shù)解析式,你能否判斷直線 y = 3x4是由直線是由直線 y = 3x1向向 平移平移 個單位得到的。個單位得到的。上上5 直線直線 y = kxb(k0)與)與y軸的交軸的交點是點是(0,b)活動四活動四y = kx= kxb b示意圖示意圖(草圖)(草圖)直線經(jīng)過的象限直線經(jīng)過的象限y y隨隨x x增大而增大而k k0 0b b 0 0b b 0 0 b b 0 0k k0 0b b 0

10、0 b b 0 0 b b 0 0 yxxyyxyxyxxy一、三一、三一、二、三一、二、三一、三、四一、三、四二、四二、四一、二、四一、二、四二、三、四二、三、四增增 大大減減 小小增增 大大增增 大大減減 小小減減 小小b 0直線過(直線過(0,0)b 0與與y軸的交點在軸的交點在正半軸正半軸b 0與與y軸的交點在軸的交點在負(fù)半軸負(fù)半軸(1)直線直線y=3x-2可由直線可由直線y=3x向向 平平移移 單位得到。單位得到。(2)直線直線y=x+2可由直線可由直線y=x-1向向 平平移移 單位得到。單位得到。下下2上上3(3 3)對于函數(shù))對于函數(shù)y=5x+6,yy=5x+6,y的值隨的值隨x

11、 x的值減的值減小而小而_。(4 4)函數(shù))函數(shù)y=2xy=2x1 1經(jīng)過經(jīng)過 象限象限減少減少一、三、四一、三、四隨堂練習(xí)隨堂練習(xí) 5.5.一次函數(shù)一次函數(shù)y=kx+by=kx+b中,中,kb0,kb0,且且y y隨隨x x的增大而減小,的增大而減小, 則它的圖象大致為則它的圖象大致為 ( )隨堂練習(xí)隨堂練習(xí)DCBAxy0 xxxyyy000C1、學(xué)習(xí)本課后的收獲、學(xué)習(xí)本課后的收獲知識知識方法方法學(xué)法學(xué)法1、 y = kxb(k0) 的圖象的位置、性質(zhì)的圖象的位置、性質(zhì)2、y = kxb 與與y = kx (k0)的關(guān)系)的關(guān)系1、從從特殊到一般特殊到一般的研究的研究方法方法2、數(shù)形結(jié)合數(shù)形結(jié)合的思想

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論