七年級數(shù)學上冊復習提綱_第1頁
七年級數(shù)學上冊復習提綱_第2頁
七年級數(shù)學上冊復習提綱_第3頁
七年級數(shù)學上冊復習提綱_第4頁
七年級數(shù)學上冊復習提綱_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、人教版七年級數(shù)學上冊復習提綱第一章 有理數(shù)1.1 正數(shù)與負數(shù)在以前學過的。以外的數(shù)前面加上負號“一的數(shù)叫負數(shù)(negative number)。與負數(shù)具有相反意義,即以前學過白0 0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上"+)'。大于0的數(shù)叫正數(shù)。0既不是正數(shù)也不是負數(shù)。0是正數(shù)和負數(shù)的分界,是唯一的中性數(shù)。搞清相反意義的量:南北;東西;上下;左右;上升下降;高低;增長減少等1.2 有理數(shù)正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。整數(shù)和分數(shù)統(tǒng)稱有理數(shù) (rationalnumber).

2、 以用m/n(其中m,n是整數(shù),n w 0)表示有理數(shù)。通常甫一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。數(shù)軸三要素:原點、正方向、單位長度。在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。數(shù)軸上的點和有理數(shù)的關系:所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點,不都是表示有理數(shù)。只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2; 0的相反數(shù)是0)數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù) a的絕對值(absolute value),記作|a|。從幾何意義上講,數(shù)的絕對值 是兩點間的距離。一個正數(shù)的絕對值是它本身;一個

3、負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。1.3 有理數(shù)的加減法有理數(shù)加法法則:1 .同號兩數(shù)相加,取相同的符號,并把絕對值相加。2 .絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。 互為相反數(shù)的兩個數(shù)相加得 0。3 .一個數(shù)同0相加,仍得這個數(shù)。加法的交換律和結合律有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。1.4 有理數(shù)的乘除法有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。乘積是1的兩個數(shù)互為倒數(shù)。乘法交換律 /結合律/分配律有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)

4、的倒數(shù)。兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于 0的數(shù),都得0。1.5 有理數(shù)的乘方求n個相同因數(shù)的積的運算, 叫乘方,乘方的結果叫哥(power)。在a的n次方中,a叫做底數(shù)(base number), n叫做指數(shù)(exponent )。負數(shù)的奇次哥是負數(shù),負數(shù)的偶次哥是正數(shù)。正數(shù)的任何次哥都是正數(shù),0的任何次哥都是0。有理數(shù)的混合運算法則:先乘方,再乘除,最后加減;同級運算,從左到右進行;如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。把一個大于10的數(shù)表示成aX10的n次方的形式,使用的就是科學計數(shù)法,注意 a的范圍為1Wa <10。從一個

5、數(shù)的左邊第一個非 0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。四舍五入遵從精確到哪一位就從這一位的下一位開始,而不是從數(shù)字的末尾往前四舍五入。 比如:3.5449精確到0.01就是3.54而不是3.55.廣分類正數(shù)與負數(shù)一有理數(shù) Y數(shù)軸、相反數(shù) 絕對值、倒數(shù)、 有理數(shù)大小的比較加減 乘除一 有理數(shù)運算 <> 有理數(shù)的運算律一運算結果一符號/絕對值乘方/開方->科學計數(shù)法一近似數(shù)/有效數(shù)/精確度混合運算第二章整式的加減2.1 整式單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù) .單項式指的是數(shù)或字母的積的代數(shù)式.單獨一個數(shù)

6、或一個字母也是單項式.因此,判斷代數(shù)式是否是單項式,關鍵要看代數(shù)式中數(shù)與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式.單項式的系數(shù):是指單項式中的數(shù)字因數(shù);單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和.多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關鍵要看代數(shù)式中的每一項是否是單項式.每個單項式 稱項,藜項,多項式的次數(shù)就是多項式中次數(shù)最高的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)最高項的次數(shù), 這里a b是次數(shù)最高項,其次數(shù)是 6;多項式的項是指在多項式中,每一個單項式.特別注意多項式的項包括 它前面的性質(zhì)符號.它們都是用字母表示數(shù)或列式表示數(shù)量關系。注意單

7、項式和多項式的每一項都包括它前面的符號。單項式和多項式統(tǒng)稱為整式。2.2 整式的加減同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(w0)無關。同類項必須同時滿足兩個條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可.同類項與 系數(shù)大小、字母的排列順序無關合并同類項:把多項式中的同類項合并成一項。可以運用交換律,結合律和分配律。合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;字母的升降哥排列:按某個字母的指數(shù)從?。ù螅┑酱螅ㄐ。┑捻樞蚺帕?。如果括號外的因數(shù)是正(負)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同(反)。整

8、式加減的一般步驟:1、如果遇到括號按去括號法則先去括號.2、結合同類項.3、合并同類項2.3 整式的乘法法則:單項式與單項式相乘,把它們的系數(shù)、同底數(shù)哥分別相乘,其余字母連同它的指數(shù)不變,作為積的因式單項式和多項式相乘,就是用單項式去乘多項式的每項,再把所得的積相加。多項式和多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。2.4 整式的除法法則單項式相除,把系數(shù)、同底數(shù)哥分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加。(單項式:單項式的次數(shù)、系數(shù)分類列式子一

9、整式L多項式:多項式的項數(shù)、系數(shù)、次數(shù)一升降哥排列去添括號整式的加減VL 合并同類項第三章一元一次方程3.1 一元一次方程方程是含有未知數(shù)的等式。方程都只含有一個未知數(shù) (元)x,未知數(shù)x的指數(shù)都是1 (次),這樣的方程叫做一元一次方程(linear equationwith one unknown) 。注意判斷一個方程是否是一元一次方程要抓住三點:1)未知數(shù)所在的式子是整式(方程是整式方程);2)化簡后方程中只含有一個未知數(shù);3)經(jīng)整理后方程中未知數(shù)的次數(shù)是1.解方程就是求出使方程中等號左右兩邊相等的未知數(shù)的值,這個值就是方程的解(solution)。等式的性質(zhì):1)等式兩邊同時加上或減去同

10、一個數(shù)或同一個式子(整式或分式),等式不變(結果仍相等)2)等式兩邊同時乘以或除以同一個不為零的數(shù),等式不變注意:運用性質(zhì)時,一定要注意等號兩邊都要同時變;運用性質(zhì)2時,一定要注意0這個數(shù).3.2 解一元一次方程(一)-合并同類項與移項一般步驟:移項一合并同類項一系數(shù)化1 ;(可以省略部分)了解無限循環(huán)小數(shù)化分數(shù)的方法,從而證明它是分數(shù),也就是有理數(shù)。3.3 一般步驟:去分母(方程兩邊同乘各分母的最小公倍數(shù))一去括號一移項一合并同類項一系數(shù)化1 ;以上是解一元一次方程五個基本步驟,在實際解方程的過程中,五個步驟不一定完全用上,或有些步驟還需要重復使用.因此,解方程時,要根據(jù)方程的特點,靈活選擇

11、方法.在解方程時還要注意以下幾點:去分母,在方程兩邊都乘以各分母的最小公倍數(shù),不要漏乘不含分母的項;分子是一個整體,去分母后應加上括號;去分母與分母化整是兩個概念,不能混淆;去括號遵從先去小括號,再去中括號,最后去大括號不要漏乘括號的項;不要弄錯符號;移項把含有未知數(shù)的項移到方程的一邊,其他項都移到方程的另一邊(移項要變符號)移項要變號;不要丟項合并同類項,解方程是同解變形,每一步都是一個方程,不能像計算或化簡題那樣寫能連等的形式.把方程化成ax=b (awo)的形式 字母及其指數(shù)不變系數(shù)化成 1在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解不要分子、分母搞顛倒3.4實際問題與一元一次方程一 .

12、概念梳理列一元一次方程解決實際問題的一般步驟是:審題,特別注意關鍵的字和詞的意義,弄清相關數(shù)量關系,設出未知數(shù)(注意單位),根據(jù)相等關系列出方程,解這個方程,檢驗并寫出答案(包括單位名稱)一些固定模型中的等量關系:數(shù)字問題:abc表示一個三位數(shù),則有 abc = 100a 10b - c行程問題:甲乙同時相向行走相遇時:甲走的路程+乙走的路程=總路程甲走的時間=乙走的時間;甲乙同時同向行走追及時:甲走的路程一乙走的路程二甲乙之間的距離工程問題:各部分工作量之和=總工作量;儲蓄問題:本息和=本金+利息商品銷售問題:商品利潤=商品售價一商品成本價 =商品利潤率x商品成本價或商品售價 =商品成本價x

13、(1 + 利潤率)產(chǎn)油量=油菜籽畝產(chǎn)量X含油率X種植面積二.思想方法(本單元常用到的數(shù)學思想方法小結)建模思想:通過對實際問題中的數(shù)量關系的分析,抽象成數(shù)學模型,建立一元一次方程的思想方程思想:用方程解決實際問題的思想就是方程思想化歸思想:解一元一次方程的過程,實質(zhì)上就是利用去分母、去括號、移項、合并同類項、未知數(shù)的系數(shù)化為1等各種同解變形,不斷地用新的更簡單的方程來代替原來的方程,最后逐步把方程轉化為 x=a的形式.體現(xiàn)了化朱知”為已知”的化歸思想.數(shù)形結合思想:在列方程解決問題時,借助于線段示意圖和圖表等來分析數(shù)量關系,使問題中的數(shù)量關系很直觀地展示出來,體現(xiàn)了數(shù)形結合的優(yōu)越性分類思想:在

14、解含字母系數(shù)的方程和含絕對值符號的方程過程中往往需要分類討論,在解有關方案設計的實際問題的過程中往往也要注意分類思想在過程中的運用三.典型例題例1.已知方程2xm 3+3x=5是一元一次方程,則 m=.解:由一元一次方程的定義可知 m 3=1,解得 m=4.或m3=0,解得 m=3所以m=4或m=3警示:很多同學做到這種題型時就想到指數(shù)是1,從而寫成m=1,這里一定要注意 x的指數(shù)是(m3).例2.已知x = -2是方程 ax2- (2a3) x+5=0的解,求a的值.解:x= - 2 是方程 ax2 2 2a3) x+5=0 的解.將x= 2代入方程,得 a(2) 2 (2a3) (2) +

15、5=0化簡,得 4a+4a 6+5=01 a= 8點撥:要想解決這道題目,應該從方程的解的定義入手,方程的解就是使方程左右兩邊值相等的未知數(shù)的 值,這樣把x=2代入方程,然后再解關于 a的一元一次方程就可以了 .例 3.解方程 2 (x+1) 3 (4x 3) =9 (1 x).解:去括號,得 2x+2 12x+9=9 9x,移項,得 2+99=12x 2x9x.合并同類項,得 2=x,即x=2.點撥:此題的一般解法是去括號后將所有的未知項移到方程的左邊,已知項移到方程的右邊,其實,我們 在去括號后發(fā)現(xiàn)所有的未知項移到方程的左邊合并同類項后系數(shù)不為正,為了減少計算的難度,我們可以根據(jù) 等式的對

16、稱性,把所有的未知項移到右邊去,已知項移到方程的左邊,最后再寫成x=a的形式.1 1 -1 i'x-1'、I-+ 3 |+5 +7> = 11 - 1 i'x-1 c ,-I +3 + 5 I = 16|41 2)J1 x-1_.3二14 . 2二1解析:方程兩邊乘以8,再移項合并同類項,得例4.解方程8 t 6 3 I 2) 一 ,同樣,方程兩邊乘以 6,再移項合并同類項,得x - 1方程兩邊乘以4,再移項合并同類項,得 2方程兩邊乘以2,再移項合并同類項,得 x=3.說明:解方程時,遇到多重括號,一般的方法是從里往外或從外往里運用乘法的分配律逐層去特號,而本

17、題最簡捷的方法卻不是這樣,是通過方程兩邊分別乘以一個數(shù),達到去分母和去括號的目的。4x -1.5 5x -0.8 1.2 -x例 5.解方程 0.50.2- 0.1 .(4x-1.5) 2 _(5x-0.8) 5 (1.2-x) 10解析:方程可以化為0.5父20.2 550.1父10整理,得 2(4 x-1.5) 5(5x - 0.8) =10(1.2x)_11去括號移項合并同類項,得7x=11,所以x= 7 .說明:一見到此方程,許多同學立即想到老師介紹的方法,那就是把分母化成整數(shù),即各分數(shù)分子分母都 乘以10,再設法去分母,其實,仔細觀察這個方程,我們可以將分母化成整數(shù)與去分母兩步一步到

18、位,第一個 分數(shù)分子分母都乘以 2,第二個分數(shù)分子分母都乘以 5,第三個分數(shù)分子分母都乘以 10.x x x x例6.解方程 一 一二1.6 12 20 30解析:原方程可化為 2 M3 3M4 4M5 5M 6xxxxxxxx, =1.方程即為 23344556x x .一 一一 二1.所以有2 6再來解之,就能很快得到答案:x=3.6=2X3, 12=3X4, 20=4X5,知識鏈接:此題如果直接去分母,或者通分,數(shù)字較大,運算煩瑣,發(fā)現(xiàn)分母30=5 >,聯(lián)系到我們小學曾做過這樣的分式化簡題,故采用拆項法解之比較簡便例7.參加某保險公司的醫(yī)療保險,住院治療的病人可享受分段報銷,?保險

19、公司制度的報銷細則如下表,某人今年住院治療后得到保險公司報銷的金額是1260元,那么此人的實際醫(yī)療費是()住院醫(yī)療費(元)報銷率()不超過500的部分0超過5001000的部分60超過10003000的部分80A. 2600 元 B. 2200 元 C. 2575 元 D. 2525 元解析:設此人的實際醫(yī)療費為 x元,根據(jù)題意列方程,得500 >0+500 >60%+ (x 500500) X80%=1260.解之,得x=2200,即此人的實際醫(yī)療費是 2200元.故選B.點撥:解答本題首先要弄清題意,讀懂圖表,從中應理解醫(yī)療費是分段計算累加求和而得的.因為500X60%<

20、 1260<2000X80%,所以可知判斷此人的醫(yī)療費用應按第一檔至第三檔累加計算例8.我市某縣城為鼓勵居民節(jié)約用水, 對自來水用戶按分段計費方式收取水費: 若每月用水不超過 7立方米, 則按每立方米1元收費;若每月用水超過7立方米,則超過部分按每立方米 2元收費.如果某戶居民今年 5月繳 納了 17元水費,那么這戶居民今年 5月的用水量為 立方米.解析:由于1X7V 17,所以該戶居民今年 5月的用水量超標.設這戶居民5月的用水量為x立方米,可得方程:7X1+2 (x7) =17,解得x=12.所以,這戶居民5月的用水量為12立方米.例9.足球比賽的記分規(guī)則為:勝一場得3分,平一場得1

21、分,輸一場得0分,一支足球隊在某個賽季中共需比賽14場,現(xiàn)已比賽了 8場,輸了 1場,得17分,請問:前8場比賽中,這支球隊共勝了多少場?這支球隊打滿14場比賽,最高能得多少分?通過對比賽情況的分析,這支球隊打滿14場比賽,得分不低于 29分,就可以達到預期的目標,請你分析一下,在后面的 6場比賽中,這支球隊至少要勝幾場,才能達到預期目標?解析:設這個球隊勝了 x場,則平了( 81 x)場,根據(jù)題意,得3x+ (8-1-x) =17.解得 x=5.所以,前8場比賽中,這個球隊共勝了5場.打滿14場比賽最高能得17+ (148)q=35分.由題意知,以后的 6場比賽中,只要得分不低于 12分即可

22、.勝不少于4場,一定能達到預期目標.而勝了 3場,平3場,正好達到預期目標.所以在以后的比賽中, 這個球隊至少要勝 3場.例10.國家為了鼓勵青少年成才,特別是貧困家庭的孩子能上得起大學,設置了教育儲蓄,其優(yōu)惠在于,目 前暫不征收利息稅.為了準備小雷5年后上大學的學費 6000元,他的父母現(xiàn)在就參加了教育儲蓄,小雷和他父 母討論了以下兩種方案:先存一個2年期,2年后將本息和再轉存一個 3年期;直接存入一個 5年期.你認為以上兩種方案,哪種開始存入的本金較少?教育儲蓄(整存整取)年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%.解析:了解儲蓄的有關知識,掌握利

23、息的計算方法,是解決這類問題的關鍵,對于此題,我們可以設小雷父母開始存入x元.然后分別計算兩種方案哪種開始存入的本金較少2 年后,本息和為 x (1+2. 70%X2) =1.054x;再存3年后,本息和要達到 6000元,則1.054x (1+3. 24% X3) =6000.解得 x=5188.按第二種方案,可得方程x (1+3. 60%X5) =6000.解得 x=5085.所以,按他們討論的第二種方案,開始存入的本金比較少例11.揚子江藥業(yè)集團生產(chǎn)的某種藥品包裝盒的側面展開圖如圖所示.如果長方體盒子的長比寬多4 cm ,求這種藥品包裝盒的體積.|高寬rl分析:從展開圖上的數(shù)據(jù)可以看出,

24、展開圖中兩高與兩寬和為14cm,所以一個寬與一個高的和為 7cm,如果設這種藥品包裝盒的寬為 xcm,則高為(7 x) cm,因為長比寬多 4cm,所以長為(x+4) cm,根據(jù)展開圖 可知一個長與兩個高的和為 13cm,由此可列出方程.解:設這種藥品包裝盒的寬為xcm,則高為(7 x) cm,長為(x+4) cm.根據(jù)題意,得(x+4) +2 (7x) =13,解得 x=5 ,所以 7 x=2, x+4=9.故長為9cm,寬為5cm,高為2cm.所以這種藥品包裝盒的體積為:9X5X2=90 (cm3).例12.某石油進口國這個月的石油進口量比上個月減少了5%,由于國際油價上漲,這個月進口石油

25、的費用反而比上個月增加了 14%.求這個月的石油價格相對上個月的增長率.解:設這個月的石油價格相對上個月的增長率為x.根據(jù)題意得(1+x) (1 5%) =1 + 14% 解得 x=20%答:這個月的石油價格相對上個月的增長率為20%.點評:本題是一道增長率的應用題.本月的進口石油的費用等于上個月的費用加上增加的費用,也就是本月的石油進口量乘以本月的價格 .設出未知數(shù),分別表示出每一個數(shù)量,列出方程進行求解.列方程解應用題的關鍵是找對等量關系,然用代數(shù)式表示出其中的量,列方程解答例13.某市參加省初中數(shù)學競賽的選手平均分數(shù)為78分,其中參賽的男選手比女選手多50%,而女選手的平均分比男選手的平

26、均分數(shù)高10%,那么女選手的平均分數(shù)為 .解析:總平均分數(shù)和參賽選手的人數(shù)及其得分有關.因此,必須增設男選手或女選手的人數(shù)為輔助未知數(shù).不妨設男選手的平均分數(shù)為x分,女選手的人數(shù)為 a人,那么女選手的平均分數(shù)為1. 1x分,男選手的人數(shù)為1.5a x 1.1x a -二781.5a人,從而可列出方程1.5a+a,解得x=75,所以1. 1x=82. 5.即女選手的平均分數(shù)為 82. 5分.四、數(shù)學思想方法的學習1 .解一元一次方程時,要明確每一步過程都作什么變形,應該注意什么問題2 .尋找實際問題的數(shù)量關系時,要善于借助直觀分析法,如表格法,直線分析法和圖示分析法等.3.列方程解應用題的檢驗包

27、括兩個方面:檢驗求得的結果是不是方程的解;是要判斷方程的解是否符合題目中的 實際意義.【模擬試題】一、選擇題:1.幾個同學在日歷縱列上圈出了三個數(shù),算出它們的和,其中錯誤的一個是()A、28B、33C、45 D、57(m - y) =2y、2 .已知y=1是方程23的解,則關于x的方程m (x+4) =m (2x+4)的解是()A、x=1 B、x=_1C、x=0 D、方程無解3某種商品的進價為1200元,標價為1750元,后來由于該商品積壓,商店準備打折出售,但要保持利潤不低于5 % ,則至多可打()A、6折B、7折C、8折 D、9折4 .下列說法中,正確的是()A、代數(shù)式是方程B、方程是代數(shù)

28、式C、等式是方程D、方程是等式15 . 一個數(shù)的3與2的差等于這個數(shù)的一半.這個數(shù)是()A、 12B、 T2C、18D、 T86 .母親26歲結婚,第二年生了兒子,若干年后,母親的年齡是兒子的3倍.此時母親的年齡為()A、39 歲7. A、B兩地相距 那么提速后只需要(3之A、10小時二、填空題B、42 歲C、45 歲D、48 歲240千米,火車按原來的速度行駛需要4小時到達目的地,火車提速后,速度比原來加快30%,)即可到達目的地。B、3113小時C、4130小時d、4113小時8 .已知甲數(shù)比乙數(shù)的 2倍大1,如果設甲數(shù)為x,那么乙數(shù)可表示為 ;如果設乙數(shù)為y,那么甲數(shù)可表 示為.9 .歡

29、歡的生日在8月份.在今年的8月份日歷上,歡歡生日那天的上、下、左、右 4個日期的和為76,那么 歡歡的生日是該月的 號.10 .從甲地到乙地,公共汽車原需行駛7小時,開通高速公路后,車速平均每小時增加了20千米,只需5小時即可到達。甲乙兩地的路程是 ;三、解答題11 .解下列方程x 2 2x-3 , ,_、- 二 1(1)5(x+8) =6(2x-7)+54612 . 一家商店將某型號彩電先按原售價提高40%,然后在廣告中寫上 大酬賓,八折優(yōu)惠”.經(jīng)顧客投訴后,執(zhí)法部門按已得非法收入的 10倍處以每臺2700元的罰款.求每臺彩電的原價格.13 .小明的爸爸三年前為小明存了一份3000元的教育儲

30、蓄.今年到期時取出,得本利和為3243元.請你幫小明算一算這種儲蓄的年利率.14 .在社會實踐活動中,某校甲、乙、丙三位同學一起調(diào)查了高峰時段北京的二環(huán)路、三環(huán)路、四環(huán)路的車流 量(每小時通過觀測點的汽車車輛數(shù)),三位同學匯報高峰時段的車流量情況如下:甲同學說:上環(huán)路車流量為每小時 10 000輛”.乙同學說:四環(huán)路比三環(huán)路車流量每小時多2000輛”.丙同學說:三環(huán)路車流量的3倍與四環(huán)路車流量的差是二環(huán)路車流量的2倍”.請你根據(jù)他們所提供的信息,求出高峰時段三環(huán)路、四環(huán)路的車流量各是多少?【試題答案】1. A.提示:日歷上縱列上的三個數(shù)的和是中間一個數(shù)的3倍2. C.提示:將y=1代入方程得

31、m的值,再將 m代入m (x+4) =m (2x+4)1575 x -1200 L”二 5%3. C.提示:設至多可打x折,可得方程1200解得x=0. 84. D.提示:方程是含未知數(shù)的等式 1 c 1 x 2 = x5. B.提示:設這個數(shù)為 x.可得方程32 .解得x=-12.6. A.提示:設x年后,母親的年齡是兒子的 3倍,可得方程27+x=3 (1+x)7. B.提示:設原來速度為 x千米/時,則x=60千米/時x -18. 2 , 2y+1 提示:根據(jù)等量關系甲數(shù) =2X乙數(shù)+1來解此題9. 19 提示:設歡歡的生日為x號,可彳#方程 x-1+x+1+x+7+x -7=7610 . 350千米提示:設間接未知數(shù),設原車速為 x千米/時,則開通高速公路后,車速為(x+20)千米/時,列 方程得7x=5 (x+20),解得x=50 ,所以兩地路程為 7X50=350 (千米).11 .去括號,得5x+40=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論