版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、初中數(shù)學(xué)各種公式大全(完整版)1乘法與因式分解(a+b)(a_b)二a2-b2(ab)2二a22ab+b2:+b)-ab+b2)二a3+b3;(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2二(a+b)2-4abo2冪的運(yùn)算性質(zhì)amxanam+namanam-n(am)namn(ab)n第10頁共17頁9anbn:包)nanbbna-n1,特別:()-n(善)na1(a/0)o3二次根式 館)2-a(an0);屈-|a|;陌二掲乜;誥(a,b0)o4三角不等式|a|-|b|ab|a|+|b|(定理);加強(qiáng)條件:|a|-|b|a士b|a|+|b|也成立,
2、這個不等式也可稱為向量的三角不等式(其中a,b分別為向量a和向量b)|a+b|a|+|b|;|a-b|a|+|b|;|a|b-bab;|a-b|n|a|-|b|;-|a|a|a|;5某些數(shù)列前n項(xiàng)之和1+2+3+4+5+6+7+8+9+n=n(n+1)/2;1+3+5+7+9+11+13+15+.+(2n-1)=n2;2+4+6+8+10+12+14+(2n)=n(n+1);l2+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+口3二n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)
3、(n+2)/3;6一元二次方程對于方程:ax2+bx+c=0: 求根公式是X二,其中二b2-4ac叫做根的判別式。2a當(dāng)厶。時,方程有兩個不相等的實(shí)數(shù)根;當(dāng)0時,方程有兩個相等的實(shí)數(shù)根;當(dāng)A0時,方程有實(shí)數(shù)根。 若方程有兩個實(shí)數(shù)根X和X2J則二次三項(xiàng)式ax2+bx+c可分解為a(x-xj(x-x2)。 以a和b為根的一元二次方程是X2-(a+b)x+ab=0e7一次函數(shù)次函數(shù)y=kx+b(kzO)的圖象是一條直線(b是直線與y軸的交點(diǎn)的縱坐標(biāo),稱為截距)。 當(dāng)k0時,y隨x的增大而增大(直線從左向右上升); 當(dāng)k0時,雙曲線在一、三象限(在每一象限內(nèi),從左向右降); 當(dāng)kV0時,雙曲線在二、四
4、象限(在每一象限內(nèi),從左向右上升)。9二次函數(shù)(1).定義:一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a主0),那么y叫做x的二次函數(shù)。(2).拋物線的三要素:開口方向、對稱軸、頂點(diǎn)。 a的符號決定拋物線的開口方向:當(dāng)a0時,開口向上;當(dāng)0時x=0(y軸)(0,0)y=ax2+k開口向上x=0(y軸)(0,k)y=a(x-h)2當(dāng)a0(即a、b同號)2aa時,對稱軸在y軸左側(cè);b,與y軸交于正半軸;c0,與y軸交于負(fù)半軸.以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時,仍成立.如拋物線的對稱軸在y軸右側(cè),則b0)。拋物線與x軸相交;b有一個交點(diǎn)(頂點(diǎn)在x軸上)。C=0)。拋物線與x軸相切;C沒有交點(diǎn)
5、。(0)。拋物線與x軸相離。 平行于x軸的直線與拋物線的交點(diǎn)x同一樣可能有0個交點(diǎn)、1個交點(diǎn)、2個交點(diǎn)當(dāng)有2個交點(diǎn)時,兩交點(diǎn)的縱坐標(biāo)相等,設(shè)縱坐標(biāo)為k,則橫坐標(biāo)是ax2+bx+c=k的兩個實(shí)數(shù)根。 一次函數(shù)y=杖+n(k主)的圖像i與二次函數(shù)y=ax2+bx+乙主0)的圖像G的交點(diǎn),由方程組的解的數(shù)目來確定:y=ax2+bx+ca方程組有兩組不同的解時/與G有兩個交點(diǎn);b方程組只有一組解時。l與G只有一個交點(diǎn);c方程組無解時。/與G沒有交點(diǎn)。 拋物線與x軸兩交點(diǎn)之間的距離:若拋物線y=ax2+bx+c與x軸兩交點(diǎn)為A。,)b,),則ab1210統(tǒng)計初步(1)概念:所要考察的對象的全體叫做總體,
6、其中每一個考察對象叫做個體從總體中抽取的部份個體叫做總體的一個第10頁共17頁21樣本,樣本中個體的數(shù)目叫做樣本容量在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)(有時不止一個),叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按大小順序排列,把處在最中間的一個數(shù)(或兩個數(shù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù).(2)公式:設(shè)有n個數(shù)xi,x2,_,xn,那么:平均數(shù)為:一xXx;X12nn極差:用一組數(shù)據(jù)的最大值減去最小值所得的差來反映這組數(shù)據(jù)的變化范圍用這種方法得到的差稱為極差,即:極差=最大值-最小值; 方差:數(shù)據(jù)x、兀,x的方差為s2,12n則2=1-2-s2一xxxxn12 標(biāo)準(zhǔn)差:方差的算術(shù)平方根。x12n12xxn1數(shù)據(jù)
7、x、x,x的標(biāo)準(zhǔn)差s,222xxxx2n則s=一組數(shù)據(jù)的方差越大,這組數(shù)據(jù)的波動越大,越不穩(wěn)定。11頻率與概率(1)頻率頻率=頻數(shù),各小組的頻數(shù)之和等于總數(shù),各小組的頻率之和總數(shù)等于1,頻率分布直方圖中各個小長方形的面積為各組頻率。(2)概率 如果用P表示一個事件A發(fā)生的概率,則0P(A)0.zA越大,zA的正弓玄和正切值越大,余弦值反而越小。 余角公式:sin(90-A)二cosA,cos(90-A)二sinA。特殊角的三角函數(shù)值:sin30二cos60二*,sin45二cos45sin60二cos30二空,tan30二更tan45二1,tan60二 斜坡的坡度:水平寬度13正(余)弦定理設(shè)
8、坡角為a,貝則/ana衿。l(1) 正弦定理a/sinA二b/sinB二c/sinC=2R;注:其中R表示三角形的外接圓半徑。正弦定理的變形公式:(1)a=2RsinA,b=2RsinB,c=2RsinC;(2)sinA:sinB:sinC=a:b:c(2) 余弦定理b2=a2+c2-2accosB;a2=b2+c2-2bccosA;c2=a2+b2-2abcosC;注:zC所對的邊為c,zB所對的邊為b,zA所對的邊為a14三角函數(shù)公式(1)兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-s
9、inAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(2)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a(3)半角公式sin(A/2)=V(1-cosA)/2)sin(A/2)=-V(1-cosA)/2)c
10、os(A/2)=V(1+cosA)/2)cos(A/2)=-V(1+cosA)/2)tan(A/2)=V(1-cosA)/(1+cosA)tan(A/2)=-V(1-cosA)/(1+cosA)ctg(A/2)=V(1+cosA)/(1-cosA)ctg(A/2)=-V(1+cosA)/(1-cosA)(4)和差化積sinA+sinB=2sin(A+B)/2)cos(A-B)/2cosA+cosB=2cos(A+B)/2)sin(A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinA
11、sinB-ctgA+ctgBsin(A+B)/sinAsinB(5)積化和差2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)15平面直角坐標(biāo)系中的有關(guān)知識(1)對稱性:若直角坐標(biāo)系內(nèi)一點(diǎn)P(a,b),則P關(guān)于x軸對稱的點(diǎn)為P1(a,-b),P關(guān)于y軸對稱的點(diǎn)為P2(-a,b),關(guān)于原點(diǎn)對稱的點(diǎn)為P3(-a,-b)(2)坐標(biāo)平移:若直角坐標(biāo)系內(nèi)一點(diǎn)P(a,b)向左平移h個單位,坐標(biāo)變?yōu)镻(a-h,b),向右平移h個單位,坐標(biāo)變?yōu)?/p>
12、P(a+h,b);向上平移h個單位,坐標(biāo)變?yōu)镻(a,b+h),向下平移h個單位,坐標(biāo)變?yōu)镻(a,b-h)如:點(diǎn)A(2,-1)向上平移2個單位,再向右平移5個單位,則坐標(biāo)變?yōu)锳(7,1)。16多邊形內(nèi)角和公式多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)180。(nn3,n是正整數(shù)),外角和等于360。17平行線段成比例定理(1) 平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例。如圖:aiibiic,直線I與12分別與直線a、b、c相交與點(diǎn)A、B、C和D、E、F,則有ABDE,ABDE,BCEF。=?=?=BCEFACDFACDF(2) 推論:平行于三角形一邊的直線截其他兩邊
13、(或兩邊的延長線),所得的對應(yīng)線段成比例。如圖:ABC中,DEiiBC,DE與AB、AC相交與點(diǎn)D、E,則有:AD_AEADAE_DEDB_ECDBECAB_AC_BCAAC18 直角三角形中的射影定理直角三角形中的射影定理如圖:RMABC中,zACB90O,ADBCD丄AB于D,則有:(1)(2)(3)CD2=AD-BDAC2=AD-ABBC2=BD-AB19 圓的有關(guān)性質(zhì)(1)垂徑定理:如果一條直線具備以下五個性質(zhì)中的任意兩個性質(zhì):經(jīng)過圓心;垂直弦;平分弦;平分弦所對的劣??;平分弦所對的優(yōu)弧,那么這條直線就具有另外三個性質(zhì)注:具備,時,弦不能是直徑。(2)兩條平行弦所夾的弧相等。(3)圓心
14、角的度數(shù)等于它所對的弧的度數(shù)。(4) 一條弧所對的圓周角等于它所對的圓心角的一半。(5) 圓周角等于它所對的弧的度數(shù)的一半。(6) 同弧或等弧所對的圓周角相等。(7) 在同圓或等圓中,相等的圓周角所對的弧相等。(8)90。的圓周角所對的弦是直徑,反之,直徑所對的圓周角是90,直徑是最長的弦。、(9)圓內(nèi)接四邊形的對角互補(bǔ)。20三角形的內(nèi)心與外心(1) 三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心三角形的內(nèi)心就是三內(nèi)角角平分線的交點(diǎn)。(2) 三角形的外接圓的圓心叫做三角形的外心三角形的外心就是三邊中垂線的交點(diǎn)常見結(jié)論:RfABC的三條邊分別為:a、b、c(c為斜邊),則它的內(nèi)切圓的半徑a+b-c;2AB
15、C的周長為面積為S,其內(nèi)切圓的半徑為r,則S=1121弦切角定理及其推論(1)弦切角:頂點(diǎn)在圓上,并且一邊和圓相交,另一邊和圓相切的角叫做弦切角。如圖:zPAC為弦切角。(2)弦切角定理:弦切角度數(shù)等于它所夾的弧的度數(shù)的一半。B如果AC是的弦,PA是的切線,A為切點(diǎn),則/11PCZPAC=2AC=2ZAOC推論:弦切角等于所夾弧所對的圓周角(作用證明角相等)如果AC是的弦,PA是的切線A為切點(diǎn)則ZPAC=ZABC22相交弦定理、割線定理和切割線定理(1) 相交弦定理:圓內(nèi)的兩條弦相交,被交點(diǎn)分成的兩條線段長的積相等。如圖,即:PAPB=PCPD(2) 割線定理:從圓外一點(diǎn)引圓的兩條割線,這點(diǎn)到每條割線與圓交點(diǎn)的兩條線段長的積相等。如圖,即:PAPB=PCPD(3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥用植物鑒賞課程設(shè)計
- 植物檢疫學(xué)課程設(shè)計
- 英文散文選讀課程設(shè)計
- 素描班幾何圖形課程設(shè)計
- 火電項(xiàng)目風(fēng)險與防范
- 自述機(jī)械課程設(shè)計過程
- 縣社會穩(wěn)定風(fēng)險評估工作檔案資料明細(xì)
- 《刑罰的消滅》課件
- 托班吸管創(chuàng)意課程設(shè)計
- 互聯(lián)網(wǎng)業(yè)務(wù)員用戶維護(hù)總結(jié)
- 金融模擬交易實(shí)驗(yàn)報告
- 國家開放大學(xué)電大本科《古代小說戲曲專題》2023期末試題及答案(試卷號:1340)
- 加德納多元智能理論教學(xué)課件
- 北師大版數(shù)學(xué)八年級上冊全冊教案
- 現(xiàn)代文閱讀之散文
- 從業(yè)人員在安全生產(chǎn)方面的權(quán)利和義務(wù)
- 新開模具清單
- 抗菌藥物臨床應(yīng)用指導(dǎo)原則(2023年版)
- 2023年軍政知識綜合題庫
- 2023-2024學(xué)年福建省福州市小學(xué)語文 2023-2024學(xué)年六年級語文期末試卷期末評估試卷
- YY 0286.1-2019專用輸液器第1部分:一次性使用微孔過濾輸液器
評論
0/150
提交評論