版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Copyright 2011John Wiley & Sons, Inc. Understand concepts of the continuous distribution, especially the normal distribution.Recognize normal distribution problems, and know how to solve them.Decide when to use the normal distribution to approximate binomial distribution problems, and know how to wo
2、rk them.Decide when to use the exponential distribution to solve problems in business, and know how to work them.Copyright 2011John Wiley & Sons, Inc. 2Learning ObjectivesContinuous DistributionsContinuous distributionsContinuous distributions are constructed from continuous random variables which c
3、an be any values over a given intervalWith continuous distributions, probabilities of outcomes occurring between particular points are determined by calculating the area under the curve between these pointsUnlike discrete probability distributions, the probability of being exactly at a given point i
4、s 0 (since you can measure it more precisely)Copyright 2011 John Wiley & Sons, Inc. 3Properties of the Normal DistributionCharacteristics of the normal distribution:Continuous distribution - Line does not breakBell-shaped, symmetrical distributionRanges from - to Mean = median = modeArea under the c
5、urve = total probability = 168% of data are within one std dev of mean, 95% within two std devs, and 99.7% within three std devsCopyright 2011 John Wiley & Sons, Inc. 4Probability Density Function ofthe Normal DistributionThere are a number of different normal distributions, they are characterized b
6、y the mean and the std devCopyright 2011 John Wiley & Sons, Inc. 5Probability Density Function ofthe Normal Distribution. . . 2.71828 . . . 3.14159 = Xof dev std Xof mean eWherexxfe:21)(221XCopyright 2011 John Wiley & Sons, Inc. 6Rather than create a different table for every normal distribution (wi
7、th different mean and std devs), we can calculate a standardized normal distribution, called ZA z-score gives the number of standard deviations that a value x is above the mean.Z distribution is normal distribution with a mean of 0 and a std dev of 1 Normal Distribution Calculating ProbabilitiesCopy
8、right 2011 John Wiley & Sons, Inc. 7xzStandardized Normal Distribution - ContinuedZ distribution probability values are given in table A5 or can be calculated using softwareTable A5 gives the total area under the Z curve between 0 and any point on the positive Z axisSince the curve is symmetric, the
9、 area under the curve between Z and 0 is the same whether the Z curve is positive or negativeCopyright 2011 John Wiley & Sons, Inc. 8Z TableSecond Decimal Place in Z Z0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.000.00000.00400.00800.01200.01600.01990.02390.02790.03190.03590.100.03980.04380.0
10、4780.05170.05570.05960.06360.06750.07140.07530.200.07930.08320.08710.09100.09480.09870.10260.10640.11030.11410.300.11790.12170.12550.12930.13310.13680.14060.14430.14800.15170.900.31590.31860.32120.32380.32640.32890.33150.33400.33650.33891.000.34130.34380.34610.34850.35080.35310.35540.35770.35990.362
11、11.100.36430.36650.36860.37080.37290.37490.37700.37900.38100.38301.200.38490.38690.38880.39070.39250.39440.39620.39800.39970.40152.000.47720.47780.47830.47880.47930.47980.48030.48080.48120.48173.000.49870.49870.49870.49880.49880.49890.49890.49890.49900.49903.400.49970.49970.49970.49970.49970.49970.4
12、9970.49970.49970.49983.500.49980.49980.49980.49980.49980.49980.49980.49980.49980.4998Copyright 2011 John Wiley & Sons, Inc. 9Table Lookup of a StandardNormal Probability-3-2-10123PZ().010 3413 Z0.00 0.01 0.02 0.000.00000.00400.00800.100.03980.04380.04780.200.07930.08320.08711.000.34130.34380.34611.1
13、00.36430.36650.36861.200.38490.38690.3888Copyright 2011 John Wiley & Sons, Inc. 10Applying the Z FormulaX is normally distributed with = 485, and =105PXPZ()(.) .48560001103643For X = 485 ,Z=X-485 485105010. 1105485600-X=Z600, = XFor Z0.00 0.01 0.02 0.000.00000.00400.00800.100.03980.04380.04781.000.3
14、4130.34380.34611.100.36430.36650.36861.200.38490.38690.3888Copyright 2011 John Wiley & Sons, Inc. 11Applying the Z Formula7123.)56. 0()550(100= and 494,= with ddistributenormally is XZPXP56. 0100494550-X=Z550 = XFor Copyright 2011 John Wiley & Sons, Inc. 12Applying the Z Formula0197.)06. 2()700(100=
15、 and 494,= with ddistributenormally is XZPXP06. 2100494700-X=Z700 = XFor Copyright 2011 John Wiley & Sons, Inc. 13Applying the Z Formula94. 1100494300-X=Z300 = XFor 8292.)06. 194. 1()600300(100= and 494,= with ddistributenormally is XZPXP06. 1100494600-X=Z600 = XFor Copyright 2011 John Wiley & Sons,
16、 Inc. 14Demonstration Problem 6.9These types of problems can be solved quite easily with the appropriate technology. The output shows the MINITAB solution. Suppose we know that X is normally distributed with mean 3.58 and std dev 1.04, and we want P(X3.10172), we calculateCopyright 2011 John Wiley &
17、 Sons, Inc. 15Normal Approximation of theBinomial DistributionFor certain types of binomial distributions, thenormal distribution can be used to approximate the probabilitiesAt large sample sizes, binomial distributions approach the normal distribution in shape regardless of the value of pThe normal
18、 distribution is a good approximate for binomial distribution problems for large values of nCopyright 2011 John Wiley & Sons, Inc. 16Normal Approximation of Binomial:Parameter ConversionConversion equationsConversion example:n pn p q55. 3)70)(.30)(.60(18)30)(.60().30. and 60|25(find on,distributi bi
19、nomial a has X Given thatqpnpnpnXPCopyright 2011 John Wiley & Sons, Inc. 1765.28335. 7365.1018)55. 3(31830102030405060n70Normal Approximation of Binomial:Interval CheckCopyright 2011 John Wiley & Sons, Inc. 18Normal Approximation of Binomial:Correcting for Continuity Values Being DeterminedCorrectio
20、nX X X X X X +.50-.50-.50+.05-.50 and +.50+.50 and -.50The binomial probability , and is approximated by the normal probabilityP(X24.5| and P Xnp(|.).).256030183 55Copyright 2011 John Wiley & Sons, Inc. 19252627282930313233Total0.01670.00960.00520.00260.00120.00050.00020.00010.00000.0361XP(X)The normal approximation,P(X24.5| and 18355245 1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度演員參與綜藝節(jié)目制作合同
- 二零二五年度無子女離婚協(xié)議書及子女撫養(yǎng)費(fèi)用與財(cái)產(chǎn)分割協(xié)議
- 二零二五年度煤炭運(yùn)輸安全監(jiān)管服務(wù)合同
- 臨沂科技職業(yè)學(xué)院《土木與交通工程防災(zāi)減災(zāi)新進(jìn)展》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度智能停車系統(tǒng)車位轉(zhuǎn)讓電子版合同
- 二零二五年度茶葉品牌形象設(shè)計(jì)與市場推廣合同
- 2025年度電廠煤炭采購與能源節(jié)約合同
- 2025年度新能源汽車銷售返利合同
- 2025年西寧道路運(yùn)輸從業(yè)資格證考試題和答案
- 二零二五年度幼兒教師聘用及早期教育服務(wù)合同
- 2025戶外品牌探路者線上新媒體運(yùn)營方案
- 《個案工作介入涉罪未成年人的家庭幫教研究》
- 數(shù)字孿生產(chǎn)業(yè)發(fā)展及軌道交通領(lǐng)域的應(yīng)用研究
- 2024-2025學(xué)年人教版地理七年級上冊期末復(fù)習(xí)訓(xùn)練題(含答案)
- 統(tǒng)編版(2024新版)七年級上冊道德與法治期末綜合測試卷(含答案)
- 教育部中國特色學(xué)徒制課題:基于中國特色學(xué)徒制的新形態(tài)教材建設(shè)與應(yīng)用研究
- 2023年黑龍江日報(bào)報(bào)業(yè)集團(tuán)招聘工作人員考試真題
- 安全管理人員安全培訓(xùn)教材
- 2025年護(hù)理質(zhì)量與安全管理工作計(jì)劃
- (T8聯(lián)考)2025屆高三部分重點(diǎn)中學(xué)12月第一次聯(lián)考評物理試卷(含答案詳解)
- 工程施工揚(yáng)塵防治教育培訓(xùn)
評論
0/150
提交評論