2022屆重慶綦江區(qū)高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
2022屆重慶綦江區(qū)高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
2022屆重慶綦江區(qū)高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
2022屆重慶綦江區(qū)高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
2022屆重慶綦江區(qū)高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1數(shù)列的通項公式為則“”是“為遞增數(shù)列”的( )條件A必要而不充分B充要C充分而不必要D即不充分也不必要2已知數(shù)列滿足:,則( )A16B25C28D333的展開式中的項的系數(shù)為( )A120B80C60D404給甲、乙、丙、丁四人安排泥工、木

2、工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A12種B18種C24種D64種5的展開式中,滿足的的系數(shù)之和為( )ABCD6年部分省市將實行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時選擇歷史和化學(xué)的概率為ABCD7已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為( )A1BC2D8已知的共軛復(fù)數(shù)是,且(為虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限9復(fù)數(shù)(為虛數(shù)單位),則等于( )

3、A3BC2D10命題“”的否定是( )ABCD11已知直線yk(x1)與拋物線C:y24x交于A,B兩點,直線y2k(x2)與拋物線D:y28x交于M,N兩點,設(shè)|AB|2|MN|,則( )A16B16C120D1212已知函數(shù),則( )A2B3C4D5二、填空題:本題共4小題,每小題5分,共20分。13如圖是一個算法的偽代碼,運行后輸出的值為_14已知,為雙曲線的左、右焦點,雙曲線的漸近線上存在點滿足,則的最大值為_15如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為_.16如圖,在中,點在邊上,且,

4、將射線繞著逆時針方向旋轉(zhuǎn),并在所得射線上取一點,使得,連接,則的面積為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.18(12分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為真命題且為假命題,求實數(shù)的取值范圍.19(12分)已知滿足 ,且,求的值及的面積.(從,這三個條件中選一個,補充到上面問題中,并完成解答.)20(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的

5、視角CAD60(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為APB,DPC,問點P在何處時,+最???21(12分)已知橢圓:的兩個焦點是,在橢圓上,且,為坐標(biāo)原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求證:為定值.22(10分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù)遞增數(shù)列的特點可知,解得,由此得到若是遞

6、增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡得:,又,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.2C【解析】依次遞推求出得解.【詳解】n=1時,n=2時,n=3時,n=4時,n=5時,.故選:C【點睛】本題主要考查遞推公式的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.3A【解析】化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力.4C【解析】根據(jù)題意,分2步進行分析:,將4人分

7、成3組,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數(shù)原理計算可得答案【詳解】解:根據(jù)題意,分2步進行分析:,將4人分成3組,有種分法;,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題5B【解析】,有,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得【詳解】當(dāng)時,的展開式中的系數(shù)為當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為故選:B【點

8、睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵6B【解析】甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學(xué)同時選擇歷史和化學(xué)的概率,故選B7B【解析】畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,要使得z能取到最大值,則,當(dāng)時,x在點B處取得最大值,即,得;當(dāng)時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.8D【解析】設(shè),整

9、理得到方程組,解方程組即可解決問題【詳解】設(shè),因為,所以,所以,解得:,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點為,此點位于第四象限.故選D【點睛】本題主要考查了復(fù)數(shù)相等、復(fù)數(shù)表示的點知識,考查了方程思想,屬于基礎(chǔ)題9D【解析】利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.10D【解析】根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,故選D【點睛】本題考查全稱命題的否定,難度容易.11D【

10、解析】分別聯(lián)立直線與拋物線的方程,利用韋達定理,可得,然后計算,可得結(jié)果.【詳解】設(shè), 聯(lián)立則,因為直線經(jīng)過C的焦點, 所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎(chǔ)題。12A【解析】根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.【點睛】本題考查了分段函數(shù)計算,意在考查學(xué)生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。1313【解析】根據(jù)題意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不滿足條件,故得到此時輸出的b值為13.故答案為13.14【解析】設(shè),由

11、可得,整理得,即點在以為圓心,為半徑的圓上又點到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時,取得最大值,此時,解得15【解析】由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,解得,所以,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學(xué)生空間想象能力與計算能力,是一道中檔題.16【解析】由余弦定理求得,再結(jié)合正弦定理得,進而得,得,則面積可求【詳解】由,得,解得.因為,所以,所以.又因為,所以.因為,所以.故答案為【點睛】本題考查正弦定理

12、、余弦定理的應(yīng)用,考查運算求解能力,是中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】(1)對求導(dǎo),分,進行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,設(shè),可得,則,設(shè),對求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域為,因為,所以,當(dāng)時,令,得,令,得;當(dāng)時,則,令,得,或,令,得;當(dāng)時,當(dāng)時,則,令,得;綜上所述,當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,

13、在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時,設(shè),又因為,則,設(shè),則對于任意成立,所以在上是增函數(shù),所以對于,有,即,有,因為,所以,即,又在遞增,所以,即.【點睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.18(1) (2)或【解析】(1)根據(jù)為真命題列出不等式,進而求得實數(shù)的取值范圍;(2)應(yīng)用復(fù)合命題真假判定的口訣:真“非”假,假“非”真,一真“或”為真,兩真“且”才真.【詳解】(1),且,解得所以當(dāng)為真命題時,實數(shù)的取值范圍是.(2)由,可得,又當(dāng)時,.當(dāng)為真命題,且為假命題時,與的真假性

14、相同,當(dāng)假假時,有,解得;當(dāng)真真時,有,解得;故當(dāng)為真命題且為假命題時,可得或.【點睛】本題主要考查結(jié)合不等式的含有量詞的命題的恒成立問題,存在性問題,考查復(fù)合命題的真假判斷,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.19見解析【解析】選擇時:,,計算,根據(jù)正弦定理得到,計算面積得到答案;選擇時,故,為鈍角,故無解;選擇時,根據(jù)正弦定理解得,根據(jù)正弦定理得到,計算面積得到答案.【詳解】選擇時:,,故.根據(jù)正弦定理:,故,故.選擇時,故,為鈍角,故無解.選擇時,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計算能力和綜

15、合應(yīng)用能力.20(1);(2)當(dāng)BP為cm時,+取得最小值【解析】(1)作AECD,垂足為E,則CE10,DE10,設(shè)BCx,根據(jù)得到,解得答案.(2)設(shè)BPt,則,故,設(shè),求導(dǎo)得到函數(shù)單調(diào)性,得到最值.【詳解】(1)作AECD,垂足為E,則CE10,DE10,設(shè)BCx,則,化簡得,解之得,或(舍),(2)設(shè)BPt,則,設(shè),令f(t)0,因為,得,當(dāng)時,f(t)0,f(t)是減函數(shù);當(dāng)時,f(t)0,f(t)是增函數(shù),所以,當(dāng)時,f(t)取得最小值,即tan(+)取得最小值,因為恒成立,所以f(t)0,所以tan(+)0,因為ytanx在上是增函數(shù),所以當(dāng)時,+取得最小值【點睛】本題考查了三角

16、恒等變換,利用導(dǎo)數(shù)求最值,意在考查學(xué)生的計算能力和應(yīng)用能力.21(1)(2)證明見解析【解析】(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設(shè)直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標(biāo),表示出,根據(jù)韋達定理即可求證為定值.【詳解】(1)因為,由橢圓的定義得,點在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設(shè),直線的斜率為,設(shè)直線的方程為,聯(lián)立方程組,消去,整理得,所以,直線的直線方程為,令,則,同理,所以:,代入整理得,所以為定值.【點睛】本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問題,屬于中檔題.22(1);(2)見解析.【解析】(1)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性與極值,結(jié)合零點存在定理可得出結(jié)論;(2)設(shè)函數(shù)的極大值點和極小值點分別為、,由(1)知,且滿足,于是得出,由得,利用正

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論