湖北省武漢市華科附中2021-2022學年高三第二次聯(lián)考數(shù)學試卷含解析_第1頁
湖北省武漢市華科附中2021-2022學年高三第二次聯(lián)考數(shù)學試卷含解析_第2頁
湖北省武漢市華科附中2021-2022學年高三第二次聯(lián)考數(shù)學試卷含解析_第3頁
湖北省武漢市華科附中2021-2022學年高三第二次聯(lián)考數(shù)學試卷含解析_第4頁
湖北省武漢市華科附中2021-2022學年高三第二次聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2021-2022高考數(shù)學模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知函數(shù)為奇函數(shù),則( )AB1C2D32的圖象如圖所示,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是( )ABCD3設全集,集合,則( )ABCD4定義在上的偶

2、函數(shù),對,且,有成立,已知,則,的大小關系為( )ABCD5已知復數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()ABC-D-6已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為( )ABCD7設,為兩個平面,則的充要條件是A內(nèi)有無數(shù)條直線與平行B內(nèi)有兩條相交直線與平行C,平行于同一條直線D,垂直于同一平面8某幾何體的三視圖如圖所示,則該幾何體的體積為()ABCD9已知定義在上的奇函數(shù)滿足,且當時,則( )A1B-1C2D-210已知函數(shù),若成立,則的最小值是( )ABCD11如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩

3、條漸近線分別相交于兩點.若則雙曲線的離心率為( )ABCD12已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13集合,若是平面上正八邊形的頂點所構成的集合,則下列說法正確的為_的值可以為2;的值可以為;的值可以為;14已知一組數(shù)據(jù),1,0,的方差為10,則_15已知函數(shù),若關于x的方程有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是_.16兩光滑的曲線相切,那么它們在公共點處的切線方向相同如圖所示,一列圓 (an0,rn0,n=1,2)逐個外切,且均與曲線y=x2相切,若

4、r1=1,則a1=_,rn=_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)設函數(shù)(1)求不等式的解集;(2)若的最小值為,且,求的最小值18(12分)如圖,三棱柱中,平面,分別為,的中點.(1)求證: 平面;(2)若平面平面,求直線與平面所成角的正弦值.19(12分)設函數(shù)f(x)=ax2alnx,g(x)=,其中aR,e=2.718為自然對數(shù)的底數(shù).()討論f(x)的單調(diào)性;()證明:當x1時,g(x)0;()確定a的所有可能取值,使得f(x)g(x)在區(qū)間(1,+)內(nèi)恒成立.20(12分)新高考,取消文理科,實行“”,成績由語文、數(shù)學、外語統(tǒng)一高考成績和自主

5、選考的3門普通高中學業(yè)水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調(diào)查者中隨機選取3人進行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.21(12分)設拋物線的焦點

6、為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.22(10分)已知函數(shù),(1)若,求實數(shù)的值(2)若,求正實數(shù)的取值范圍參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎題.2B【解析】根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后

7、的函數(shù)解析式,結合題意可得出關于的等式,即可得出結果.【詳解】由圖象可得,函數(shù)的最小正周期為,則,取,則,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.3B【解析】可解出集合,然后進行補集、交集的運算即可【詳解】,則,因此,.故選:B.【點睛】本題考查補集和交集的運算,涉及一元二次不等式的求解,考查運算求解能力,屬于基礎題.4A【解析】根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,所以故選:A【點睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應用,基礎題.5A【解析】分析:

8、計算,由z1,是實數(shù)得,從而得解.詳解:復數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復數(shù)共軛的概念,屬于基礎題.6D【解析】設,利用余弦定理,結合雙曲線的定義進行求解即可.【詳解】設,由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數(shù)學運算能力.7B【解析】本題考查了空間兩個平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷【詳解】由面面平行

9、的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤8A【解析】利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:故選:【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵9B【解析】根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x0,1時

10、,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1【詳解】是定義在R上的奇函數(shù),且;的周期為4;時,;由奇函數(shù)性質(zhì)可得;時,;.故選:B.【點睛】本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導出周期,利用函數(shù)的周期變換來求解,考查理解能力和計算能力,屬于中等題.10A【解析】分析:設,則,把用表示,然后令,由導數(shù)求得的最小值詳解:設,則,令,則,是上的增函數(shù),又,當時,當時,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,的最小值是故選A點睛:本題易錯選B,利用導數(shù)法求函數(shù)的最值,解

11、題時學生可能不會將其中求的最小值問題,通過構造新函數(shù),轉化為求函數(shù)的最小值問題,另外通過二次求導,確定函數(shù)的單調(diào)區(qū)間也很容易出錯11A【解析】易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關鍵的是找到的方程或不等式,本題屬于容易題.12A【解析】由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,所以;當

12、軸時,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質(zhì)及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據(jù)對稱性,只需研究第一象限的情況,計算:,得到,得到答案.【詳解】如圖所示:根據(jù)對稱性,只需研究第一象限的情況,集合:,故,即或,集合:,是平面上正八邊形的頂點所構成的集合,故所在的直線的傾斜角為,故:,解得,此時,此時.故答案為:.【點睛】本題考查了根據(jù)集合的交集求參數(shù),意在考查學生的計算能力和轉化能力,利用對稱性是解題的關鍵.147或【解析】依據(jù)方差公式列出方程,解出即可【詳解】

13、,1,0,的平均數(shù)為,所以 解得或【點睛】本題主要考查方差公式的應用15【解析】畫出函數(shù)的圖象,再畫的圖象,求出一個交點時的的值,然后平行移動可得有兩個交點時的的范圍【詳解】函數(shù)的圖象如圖所示:因為方程有且只有兩個不相等的實數(shù)根,所以圖象與直線有且只有兩個交點即可,當過點時兩個函數(shù)有一個交點,即時,與函數(shù)有一個交點,由圖象可知,直線向下平移后有兩個交點,可得,故答案為:【點睛】本題主要考查了方程的跟與函數(shù)的圖象交點的轉化,數(shù)形結合的思想,屬于中檔題16 【解析】第一空:將圓與聯(lián)立,利用計算即可;第二空:找到兩外切的圓的圓心與半徑的關系,再將與聯(lián)立,得到,與結合可得為等差數(shù)列,進而可得.【詳解】

14、當r1=1時,圓,與聯(lián)立消去得,則,解得;由圖可知當時,將與聯(lián)立消去得,則,整理得,代入得,整理得,則.故答案為:;.【點睛】本題是拋物線與圓的關系背景下的數(shù)列題,關鍵是找到圓心和半徑的關系,建立遞推式,由遞推式求通項公式,綜合性較強,是一道難度較大的題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1)或(2)最小值為【解析】(1)討論,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得所以所求不等式的解集為或(2)根據(jù)函數(shù)圖像知:當時,所以因為,由,可知,所以,當且僅當,時,等號成立

15、所以的最小值為【點睛】本題考查了解絕對值不等式,函數(shù)最值,均值不等式,意在考查學生對于不等式,函數(shù)知識的綜合應用.18(1)詳見解析;(2).【解析】(1)連接,則且為的中點,又為的中點,又平面,平面,故平面 (2)由平面,得,以為原點,分別以,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設,則,取平面的一個法向量為,由,得:,令,得同理可得平面的一個法向量為平面平面,解得,得,又,設直線與平面所成角為,則.所以,直線與平面所成角的正弦值是19()當時,0,單調(diào)遞減;當時,0,單調(diào)遞增;()詳見解析;().【解析】試題分析:本題考查導數(shù)的計算、利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查

16、學生的分析問題、解決問題的能力和計算能力.第()問,對求導,再對a進行討論,判斷函數(shù)的單調(diào)性;第()問,利用導數(shù)判斷函數(shù)的單調(diào)性,從而證明結論,第()問,構造函數(shù)=(),利用導數(shù)判斷函數(shù)的單調(diào)性,從而求解a的值.試題解析:()0,在內(nèi)單調(diào)遞減.由=0有.當時,0,單調(diào)遞減;當時,0,單調(diào)遞增.()令=,則=.當時,0,所以,從而=0.()由(),當時,0.當,時,=.故當在區(qū)間內(nèi)恒成立時,必有.當時,1.由()有,而,所以此時在區(qū)間內(nèi)不恒成立.當時,令=().當時,=.因此,在區(qū)間單調(diào)遞增.又因為=0,所以當時,=0,即恒成立.綜上,.【考點】導數(shù)的計算,利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題

17、【名師點睛】本題考查導數(shù)的計算,利用導數(shù)求函數(shù)的單調(diào)性,解決恒成立問題,考查學生的分析問題、解決問題的能力和計算能力求函數(shù)的單調(diào)性,基本方法是求,解方程,再通過的正負確定的單調(diào)性;要證明不等式,一般證明的最小值大于0,為此要研究函數(shù)的單調(diào)性本題中注意由于函數(shù)的極小值沒法確定,因此要利用已經(jīng)求得的結論縮小參數(shù)取值范圍比較新穎,學生不易想到,有一定的難度20(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯(lián);(3)分布列見解析,.【解析】(1)分別求出中青年、中老年對高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測值,對照表格,即可得出結論;(3)年

18、齡在的被調(diào)查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據(jù)期望公式即可求解.【詳解】(1)由題中數(shù)據(jù)可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯(lián)表如圖所示了解新高考不了解新高考總計中青年22830老年81220總計302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯(lián).(3)年齡在的被調(diào)查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數(shù)可能取值為0,1,2,則;.所以的分布列為012.【點睛】本題考查概率、獨立性檢驗及隨機變量分布列和期望,考查計算求解能力,屬于基礎題.21(1)2,;

19、(2)證明見解析.【解析】(1)由題意得的方程為,根據(jù)為拋物線過焦點的弦,以為直徑的圓與相切于點.利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設,的方程為,代入的方程,得,根據(jù)直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點N的坐標為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設,的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點N的坐標為,所以,故.【點睛】本題主要考查拋物線的定義幾何性質(zhì)以及直線與拋物線的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.22(1)1(2)【解析】(1)求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論