版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Lecture 14Descriptive Statistics Statistical InferenceThe Likelihood Function and Maximum Likelihood EstimatorsWhat is Statistics?Statistics:Collecting dataOrganizing and analyzing dataDrawing conclusion from dataBasic ConceptsPopulation & SamplePopulation: the collection of all units of interestSam
2、ple: the observed unitsParameter & StatisticsParameter: measurement of populationStatistics: measurement s of sample為什么需要抽樣(sampling)? 1)總體(population)無法得到。例:光臨麥當(dāng)勞的所有顧客(無限總體)。 2)時(shí)間和成本不允許。例:美國總統(tǒng)選舉的民意測(cè)驗(yàn)。 3)實(shí)驗(yàn)具有破壞性。例:測(cè)量產(chǎn)品的壽命。Classification of StatisticsStatistics Descriptive StatisticsStatistical Infer
3、enceDescriptive StatisticsTo show and describe the information of the data by using forms, charts or values location No. of calls weeklyservice typegendercity20Brand Amalerural area20Brand Amalerural area40Brand Amalecity30Brand Bmalecity10Brand Bmalecity20Brand Bfemalecity20Brand Cmalecity40Brand A
4、malecity60Brand Bmalecity20Brand Bmalecity20Brand Bmalecity20Brand Bmalecity20Brand Bmalecity20Brand Cmalecity20Brand Bmalecity25Brand Bmalecity30Brand Bmalecity7Brand Bfemalecity20Brand Bmalecity10Brand BmaleExample. Three Services for Mobile Phones8Describing “Service Type”service typetotalrelativ
5、e frequencypercentagecumulative percentageBrand A40.22020Brand B140.77090Brand C20.110100total201100Describing “Service Type”Sample Mean:Sample Variance:Sample standard deviation: Describing “No. of Calls Weekly”Describing “No. of Calls Weekly”Describing “No. of Calls Weekly”Describing the Relations
6、hip between Two VariablesDiscrete Case: Contingency Table service typemalefemaletotalBrand A404Brand B12214Brand C202Total18220Continuous Case: Scatter PlotThe sample correlation coefficient is valued between:-1,1.Sample Correlation Coefficient1617181920Statistical InferenceTo understand the populat
7、ion parameters through the sample statistics. 統(tǒng)計(jì)分析的任務(wù)通過樣本的統(tǒng)計(jì)量來了解總體的參數(shù)??傮w參數(shù)p樣本統(tǒng)計(jì)量Parametric InferenceThe probability distribution which generated the observed data is completely known except for the values of one or more parameters.E.g. The length of life of a certain type of nuclear pacemaker has an
8、 exponential distribution with parameter b, but the exact value of b is unknown.If we observe the lifetimes of several pacemakers of this type, we can make inference about the value of b.- What is the best estimate of the value of b?- Specify an interval in which we think the value of b is likely to
9、 lie.- Decide whether or not b is smaller than some specified value.E.g. The distribution of the heights of the individuals in a certain population is assumed to be a normal distribution with mean and variance , but the exact values of and are unknown.If we observe the heights of a random sample of
10、individuals, we can make inferences about the values of and . A characteristic or combination of characteristics that determine the distribution generating the observed data is called a parameter of the distribution.The set of all possible values of a parameter or a vector of parameters is called th
11、e parameter space.Examples of the Parameter SpaceE.g. The length of life of a certain type of nuclear pacemaker has an exponential distribution with parameter b. The parameter space will be the set of all positive numbers, soE.g. The distribution of the heights in inches of the individuals in a cert
12、ain population is known to be a normal distribution with mean and variance . We might be certain that and So When the joint p.d.f. of the observations in a random sample is regarded as the function of given values of x1,xn, it is called the likelihood function.The Likelihood FunctionMaximum Likeliho
13、od EstimatorsFor each possible observed vector x=(x1,xn), let denote a value of for which the likelihood function is a maximum.Let be the estimator of q. This estimator is called the maximum likelihood estimator of q.Abbreviation: M.L.E. - maximum likelihood estimator or maximum likelihood estimateE
14、xample. Sampling from a Bernoulli DistributionSuppose that random variables X1,Xn form a random sample from a Bernoulli distribution for which the parameter q is unknown.For any observed values x1,xn, the likelihood function is The logarithm of the likelihood function is To find the value of q which
15、 maximizes and thus maximizes L(q), So the M.L.E. of q is Example. Sampling from a Normal DistributionSuppose that random variables X1,Xn form a random sample from a normal distribution for which the mean m is unknown and the variance is known.For any observed values x1,xn, the likelihood function i
16、s The logarithm of the likelihood function is To find the value of m which maximizes and thus maximizes L(m), So the M.L.E. of m is Example. Sampling from a Normal Distribution with Unknown VarianceSuppose that random variables X1,Xn form a random sample from a normal distribution for which both the
17、 mean m and the variance are unknown.For any observed values x1,xn, the likelihood function is The logarithm of the likelihood function is To find the value of m and which maximizes and thus maximizesSo the M.L.E.s of m and are Example. Sampling from a Uniform DistributionSuppose that random variables X1,Xn form a random sample from a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度互聯(lián)網(wǎng)企業(yè)技術(shù)崗位聘用勞動(dòng)合同集
- 2025年南京二手房交易房產(chǎn)評(píng)估機(jī)構(gòu)委托合同
- 二零二五年度服務(wù)器租賃與自動(dòng)駕駛技術(shù)合作合同2篇
- 2025年三方合作協(xié)議在線閱讀與合同范本對(duì)照3篇
- 二零二五年度國有建設(shè)用地使用權(quán)租賃合同樣本
- 二零二五年度校園安保人員招聘及管理合同
- 2025年度互聯(lián)網(wǎng)產(chǎn)品設(shè)計(jì)聘用合同
- 2025年度面包磚生產(chǎn)安全與環(huán)保風(fēng)險(xiǎn)評(píng)估合同
- 二零二五年度夫妻協(xié)議離婚范本:離婚后雙方財(cái)產(chǎn)分割與子女贍養(yǎng)合同
- 2025個(gè)人蝦池承包土地使用及租賃合同樣本4篇
- 高考滿分作文常見結(jié)構(gòu)完全解讀
- 專題2-2十三種高考補(bǔ)充函數(shù)歸類(講練)
- 理光投影機(jī)pj k360功能介紹
- 六年級(jí)數(shù)學(xué)上冊(cè)100道口算題(全冊(cè)完整版)
- 八年級(jí)數(shù)學(xué)下冊(cè)《第十九章 一次函數(shù)》單元檢測(cè)卷帶答案-人教版
- 帕薩特B5維修手冊(cè)及帕薩特B5全車電路圖
- 系統(tǒng)解剖學(xué)考試重點(diǎn)筆記
- 小學(xué)五年級(jí)解方程應(yīng)用題6
- 云南省地圖含市縣地圖矢量分層地圖行政區(qū)劃市縣概況ppt模板
- 年月江西省南昌市某綜合樓工程造價(jià)指標(biāo)及
- 作物栽培學(xué)課件棉花
評(píng)論
0/150
提交評(píng)論