土木工程外文翻譯_第1頁(yè)
土木工程外文翻譯_第2頁(yè)
土木工程外文翻譯_第3頁(yè)
土木工程外文翻譯_第4頁(yè)
土木工程外文翻譯_第5頁(yè)
已閱讀5頁(yè),還剩6頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、歡迎下載 安就現(xiàn)工犬爭(zhēng)ANHUJUMVFRS1TV0KSCIKNCE&lECHMJLOGV本科畢業(yè)設(shè)計(jì)外文資料翻譯英文題目:TallingbuildingandSteelconstruction中文題目:高層結(jié)構(gòu)與鋼結(jié)構(gòu)學(xué)院(部):土木建筑學(xué)院專業(yè)班級(jí):學(xué)生姓名:指導(dǎo)教師:XXX助教2012年06月02日外文資料TallingbuildingandSteelconstructionAlthoughtherehavebeenmanyadvancementsinbuildingconstructiontechnologyingeneral.Spectaculararchievementshaveb

2、eenmadeinthedesignandconstructionofultrahigh-risebuildings.Theearlydevelopmentofhigh-risebuildingsbeganwithstructuralsteelframing.Reinforcedconcreteandstressed-skintubesystemshavesincebeeneconomicallyandcompetitivelyusedinanumberofstructuresforbothresidentialandcommercialpurposes.Thehigh-risebuildin

3、gsrangingfrom50to110storiesthatarebeingbuiltallovertheUnitedStatesaretheresultofinnovationsanddevelopmentofnewstructualsystems.GreaterheightentailsincreasedcolumnandbeamsizestomakebuildingsmorerigidsothatunderwindloadtheywillnotswaybeyondanacceptablelimitExcessivelateralswaymaycauseseriousrecurringd

4、amagetopartitions,ceilings.andotherarchitecturaldetails.Inaddition,excessiveswaymaycausediscomforttotheoccupantsofthebuildingbecausetheirperceptionofsuchmotion.Structuralsystemsofreinforcedconcreteaswellassteeltakefulladvantageofinherentpotentialstiffnessofthetotalbuildingandthereforerequireaddition

5、alstiffeningtolimitthesway.InasteelstructureforexampletheeconomycanbedefinedintermsofthetotalaveragequantityofsteelpersquarefootoffloorareaofthebuildingCurveAinFig.1representstheaverageunitweightofaconventionalframewithincreasingnumbersofstories.CurveBrepresentstheaveragesteelweightiftheframeisprote

6、ctedfromalllateralloads.Thegapbetweentheupperboundaryandthelowerboundaryrepresentsthepremiumforheightforthetraditionalcolumn-and-beamframeStructuralengineershavedevelopedstructuralsystemswithaviewtoeliminatingthispremium.Systemsinsteel.Tallbuildingsinsteeldevelopedasaresultofseveraltypesofstructural

7、innovations.Theinnovationshavebeenappliedtotheconstructionofbothofficeandapartmentbuildings.Framewithrigidbelttrusses.Inordertotietheexteriorcolumnsofaframestructuretotheinteriorverticaltrussesasystemofrigidbelttrussesatmid-heightandatthetopofthebuildingmaybeused.AgoodexampleofthissystemistheFirstWi

8、sconsinBankBuilding(1974)inMilwaukee.Framedtube.Themaximumefficiencyofthetotalstructureofatallbuilding,forbothstrengthandstiffnesstoresistwindloadcanbeachievedonlyifallcolumnelementcanbeconnectedtoeachotherinsuchawaythattheentirebuildingactsasahollowtubeorrigidboxinprojectingoutoftheground.Thisparti

9、cularstructuralsystemwasprobablyusedforthefirsttimeinthe43-storyreinforcedconcreteDeWittChestnutApartmentBuildinginChicago.Themostsignificantuseofthissystemisinthetwinstructuralsteeltowersofthe110-storyWorldTradeCenterbuildinginNewYorkColumn-diagonaltrusstube.Theexteriorcolumnsofabuildingcanbespaced

10、reasonablyfarapartandyetbemadetoworktogetherasatubebyconnectingthemwithdiagonalmembersinterestingatthecentrelineofthecolumnsandbeams.ThissimpleyetextremelyefficientsystemwasusedforthefirsttimeontheJohnHancockCentreinChicago,usingasmuchsteelasisnormallyneededforatraditional40-storybuilding.Bundledtub

11、eWiththecontinuingneedforlargerandtallerbuildings,theframedtubeorthecolumn-diagonaltrusstubemaybeusedinabundledformtocreatelargertubeenvelopeswhilemaintaininghighefficiency.The110-storySearsRoebuckHeadquartersBuildinginChicagohasninetubebundledatthebaseofthebuildinginthreerows.Someoftheseindividualt

12、ubesterminateatdifferentheightsofthebuilding,demonstratingtheunlimitedarchitecturalpossibilitiesofthislateststructuralconcept.TheSearstower,ataheightof1450ft(442m),istheworldstallestbuilding.Stressed-skintubesystem.Thetubestructuralsystemwasdevelopedforimprovingtheresistancetolateralforces(windandea

13、rthquake)andthecontrolofdrift(lateralbuildingmovement)inhigh-risebuilding.Thestressed-skintubetakesthetubesystemastepfurther.Thedevelopmentofthestressed-skintubeutilizesthefagadeofthebuildingasastructuralelementwhichactswiththeframedtube,thusprovidinganefficientwayofresistinglateralloadsinhigh-riseb

14、uildings,andresultingincost-effectivecolumn-freeinteriorspacewithahighratioofnettogrossfloorarea.Becauseofthecontributionofthestressed-skinfagade,theframedmembersofthetuberequirelessmass,andarethuslighterandlessexpensive.Allthetypicalcolumnsandspandrelbeamsarestandardrolledshapesminimizingtheuseandc

15、ostofspecialbuilt-upmembers.Thedepthrequirementfortheperimeterspandrelbeamsisalsoreduced,andtheneedforupsetbeamsabovefloors,whichwouldencroachonvaluablespace,isminimized.Thestructuralsystemhasbeenusedonthe54-storyOneMellonBankCenterinPittburgh.Systemsinconcrete.Whiletallbuildingsconstructedofsteelha

16、danearlystart,developmentoftallbuildingsofreinforcedconcreteprogressedatafastenoughratetoprovideacompetitivechanllengetostructuralsteelsystemsforbothofficeandapartmentbuildings.Framedtube.Asdiscussedabove,thefirstframedtubeconceptfortallbuildingswasusedforthe43-storyDeWittChestnutApartmentBuilding.I

17、nthisbuilding,exteriorcolumnswerespacedat5.5ft(1.68m)centers,andinteriorcolumnswereusedasneededtosupportthe8-in.-thick(20-m)flat-plateconcreteslabs.Tubeintube.Anothersysteminreinforcedconcreteforofficebuildingscombinesthetraditionalshearwallconstructionwithanexteriorframedtube.Thesystemconsistsofano

18、uterframedtubeofverycloselyspacedcolumnsandaninteriorrigidshearwalltubeenclosingthecentralservicearea.Thesystem(Fig.2),knownasthetube-in-tubesystem,madeitpossibletodesigntheworldspresenttallest(714ftor218m)lighconcretebuilding(the52-storyOneShellPlazaBuildinginHouston)fortheunitpriceofatraditionalsh

19、earwallstructureofonly35stories.Systemscombiningbothconcreteandsteelhavealsobeendeveloped,anexamleofwhichisthecompositesystemdevelopedbyskidmore,Owings&Merrilinwhichanexteriorcloselyspacedframedtubeinconcreteenvelopsaninteriorsteelframing,therebycombiningtheadvantagesofbothreinforcedconcreteandstruc

20、turalsteelsystems.The52-storyOneShellSquareBuildinginNewOrleansisbasedonthissystem.Steelconstructionreferstoabroadrangeofbuildingconstructioninwhichsteelplaystheleadingrole.Moststeelconstructionconsistsoflarge-scalebuildingsorengineeringworks,withthesteelgenerallyintheformofbeams,girders,bars,plates

21、,andothermembersshapedthroughthehot-rolledprocess.Despitetheincreaseduseofothermaterials,steelconstructionremainedamajoroutletforthesteelindustriesoftheU.S,U.K,U.S.S.R,Japan,WestGerman,France,andothersteelproducersinthe1970s.Earlyhistory.Thehistoryofsteelconstructionbeginsparadoxicallyseveraldecades

22、beforetheintroductionoftheBessemerandtheSiemens-Martin(openj-hearth)processesmadeitpossibletoproducesteelinquantitiessufficientforstructureuse.Manyofproblemsofsteelconstructionwerestudiedearlierinconnectionwithironconstruction,whichbeganwiththeCoalbrookdaleBridge,builtincastironovertheSevernRiverinE

23、nglandin1777.Thisandsubsequentironbridgework,inadditiontotheconstructionofsteamboilersandironshiphulls,spurredthedevelopmentoftechniquesforfabricating,designing,andjioning.Theadvantagesofironovermasonrylayinthemuchsmalleramountsofmaterialrequired.Thetrussform,basedontheresistanceofthetriangletodefor

24、mation,longusedintimber,wastranslatedeffectivelyintoiron,withcastironbeingusedforcompressionmembers-ie,thosebearingtheweightofdirectloading-andwroughtironbeingusedfortensionmembers-ie,thosebearingthepullofsuspendedloading.Thetechniqueforpassingiron,heatedtotheplasticstate,betweenrollstoformflatandro

25、undedbars,wasdevelopedasearlyas1800;by1819angleironswererolled;andin1849thefirstIbeams,17.7feet(5.4m)long,werefabricatedasroofgirdersforaParisrailroadstation.TwoyearslaterJosephPaxtonofEnglandbuilttheCrystalPalacefortheLondonExpositionof1851.Heissaidtohaveconceivedtheideaofcageconstruction-usingrela

26、tivelyslenderironbeamsasaskeletonfortheglasswallsofalarge,openstructure.ResistancetowindforcesintheCrystalpalacewasprovidedbydiagonalironrods.Twofeatureareparticularlyimportantinthehistoryofmetalconstruction;first,theuseoflatticedgirder,whicharesmalltrusses,aformfirstdevelopedintimberbridgesandother

27、structuresandtranslatedintometalbyPaxton;andsecond,thejoiningofwrought-irontensionmembersandcast-ironcompressionmembersbymeansofrivetsinsertedwhilehot.In1853thefirstmetalfloorbeamswererolledfortheCooperUnionBuildinginNewYork.Inthelightoftheprincipalmarketdemandforironbeamsatthetime,itisnotsurprising

28、thattheCooperUnionbeamscloselyresembledrailroadrails.ThedevelopmentoftheBessemerandSiemens-Martinprocessesinthe1850sand1860ssuddenlyopenthewaytotheuseofsteelforstructuralpurpose.Strongerthanironinbothtensionandcompression,thenewlyavailablemetalwasseizedonbyimaginativeengineers,notablybythoseinvolved

29、inbuildingthegreatnumberofheavyrailroadbridgesthenindemandinBritain,Europe,andtheU.S.AnotableexamplewastheEadsBridge,alsoknownastheSt.LouisBridge,inSt.Louis(1867-1874),inwhichtubularsteelribswereusedtoformarcheswithaspanofmorethan500ft(152.5m).InBritain,theFirthofForthcantileverbridge(1883-90)employ

30、edtubularstruts,some12ft(3.66m)indiameterand350ft(107m)long.Suchbridgesandotherstructureswereimportantinleadingtothedevelopmentandenforcementofstandardsandcodificationofpermissibledesignstresses.Thelackofadequatetheoreticalknowledge,andevenofanadequatebasisfortheoreticalstudies,limitedthevalueofstre

31、ssanalysisduringtheearlyyearsofthe20thcentury,asiccasionallyfailuressuchasthatofacantileverbridgeinQuebecin1907,revealed.Butfailureswererareinthemetal-skeletonofficebuildings;thesimplicityoftheirdesignprovedhighlypracticalevenintheabsenceofsophisticatedanalysistechniques.Throughoutthefirstthirdofthe

32、century,ordinarycarbonsteel,withoutanyspecialalloystrengtheningorhardening,wasuniversallyused.Thepossibilitiesinherentinmetalconstructionforhigh-risebuildingwasdemonstratedtotheworldbytheParisExpositionof1889.forwhichAlexandre-GustaveEiffel,aleadingFrenchbridgeengineer,erectedanopenworkmetaltower300

33、m(984ft)high.Notonlywastheheight-morethandoublethatoftheGreatPyramid-remarkable,butthespeedoferectionandlowcostwereevenmoreso,asmallcrewcompletedtheworkinafewmonths.Thefirstskyscrapers.Meantime,intheUnitedStatesanotherimportantdevelopmentwastakingplace.In1884-85Maj.WilliamLeBaronJenney,aChicagoengin

34、eer,haddesignedtheHomeInsuranceBuilding,tenstorieshigh,withametalskeleton.JenneysbeamswereofBessemersteel,thoughhiscolumnswerecastiron.Castironlintelssupportingmasonryoverwindowopeningswere,inturn,supportedonthecastironcolumns.Soildmasonrycourtandpartywallsprovidedlateralsupportagainstwindloading.Wi

35、thinadecadethesametypeofconstructionhadbeenusedinmorethan30officebuildingsinChicagoandNewYork.Steelplayedalargerandlargerroleinthese,withrivetedconnectionsforbeamsandcolumns,sometimesstrengthenedforwindbracingbyoverlayinggussetplatesatthejunctionofverticalandhorizontalmembers.Lightmasonrycurtainwall

36、s,supportedateachfloorlevel,replacedtheoldheavymasonrycurtainwalls,supportedateachfloorlevel,replacedtheoldheavymasonry.ThoughthenewconstructionformwastoremaincentredalmostentirelyinAmericaforseveraldecade,itsimpactonthesteelindustrywasworldwide.Bythelastyearsofthe19thcentury,thebasicstructuralshape

37、s-Ibeamsupto20in.(0.508m)indepthandZandTshapesoflesserproportionswerereadilyavailable,tocombinewithplatesofseveralwidthsandthicknessestomakeefficientmembersofanyrequiredsizeandstrength.In1885theheavieststructuralshapeproducedthroughhot-rollingweighedlessthan100pounds(45kilograms)perfoot;decadebydeca

38、dethisfigureroseuntilinthe1960sitexceeded700pounds(320kilograms)perfoot.CoincidentwiththeintroductionofstructuralsteelcametheintroductionoftheOtiselectricelevatorin1889.Thedemonstrationofasafepassengerelevator,togetherwiththatofasafeandeconomicalsteelconstructionmethod,sentbuildingheightssoaring.InN

39、ewYorkthe286-ft(87.2-m)FlatironBuildingof1902wassurpassedin1904bythe375-ft(115-m)TimesBuilding(renamedtheAlliedChemicalBuilding),the468-ft(143-m)CityInvestingCompanyBuildinginWallStreet,the612-ft(187-m)SingerBuilding(1908),the700-ft(214-m)MetropolitanTower(1909)and,in1913,the780-ft(232-m)WoolworthBu

40、ilding.Therapidincreaseinheightandtheheight-to-widthratiobroughtproblems.Tolimitstreetcongestion,buildingsetbackdesignwasprescribed.Onthetechnicalside,theproblemoflateralsupportwasstudied.Adiagonalbracingsystem,suchasthatusedintheEiffelTower,wasnotarchitecturallydesirableinofficesrelyingonsunlightfo

41、rillumination.Theanswerwasfoundingreaterrelianceonthebendingresistanceofcertainindividualbeamsandcolumnsstrategicallydesignedintotheskeletnframe,togetherwithahighdegreeofrigiditysoughtatthejunctionofthebeamsandcolumns.Withtodaysmoderninteriorlightingsystems,however,diagonalbracingagainstwindloadshas

42、returned;onenotableexampleistheJohnHancockCenterinChicago,wheretheexternalX-bracesformadramaticpartofthestructuresfacade.WorldWarIbroughtaninterruptiontotheboominwhathadcometobecalledskyscrapers(theoriginofthewordisuncertain),butinthe1920sNewYorksawaresumptionoftheheightrace,culminatingintheEmpireSt

43、ateBuildinginthe1931.TheEmpireStates102stories(1,250ft.381m)weretokeepitestablishedasthehightestbuildingintheworldforthenext40years.Itsspeedoftheerectiondemonstratedhowthoroughlythenewconstructiontechniquehadbeenmastered.AdepotacrossthebayatBayonne,N.J.,suppliedthegirdersbylighterandtruckonaschedule

44、operatedwithmillitaryprecision;ninederrickspowerdebyelectrichoistsliftedthegirderstoposition;anindustrial-railwaysetupmovedsteelandothermaterialoneachfloor.Initialconnectionsweremadebybolting,closelyfollowedbyriveting,followedbymasonryandfinishing.Theentirejobwascompletedinoneyearand45days.Theworldw

45、idedepressionofthe1930sandWorldWarIIprovidedanotherinterruptiontosteelconstructiondevelopment,butatthesametimetheintroductionofweldingtoreplacerivetingprovidedanimportantadvance.Joiningofsteelpartsbymetalareweldinghadbeensuccessfullyachievedbytheendofthe19thcenturyandwasusedinemergencyshiprepairsdur

46、ingWorldWarI,butitsapplicationtoconstructionwaslimiteduntilafterWorldWarII.Anotheradvanceinthesameareahadbeentheintroductionofhigh-strengthboltstoreplacerivetsinfieldconnections.SincethecloseofWorldWarII,researchinEurope,theU.S.,andJapanhasgreatlyextendedknowledgeofthebehaviorofdifferenttypesofstruc

47、turalsteelundervaryingstresses,includingthoseexceedingtheyieldpoint,makingpossiblemorerefinedandsystematicanalysis.Thisinturnhasledtotheadoptionofmoreliberaldesigncodesinmostcountries,moreimaginativedesignmadepossiblebyso-calledplasticdesign?Theintroductionofthecomputerbyshort-cuttingtediouspaperwor

48、k,madefurtheradvancesandsavingspossible.中文翻譯近年來,盡管一般的建筑結(jié)構(gòu)設(shè)計(jì)取得了很大的進(jìn)步,但是取得顯著成績(jī)的還要屬超高層建筑結(jié)構(gòu)設(shè)計(jì)。最初的高層建筑設(shè)計(jì)是從鋼結(jié)構(gòu)的設(shè)計(jì)開始的。鋼筋混凝土和受力外包鋼筒系統(tǒng)運(yùn)用起來是比較經(jīng)濟(jì)的系統(tǒng),被有效地運(yùn)用于大批的民用建筑和商業(yè)建筑中。50層到100層的建筑被定義為超高層建筑。而這種建筑在美國(guó)得廣泛的應(yīng)用是由于新的結(jié)構(gòu)系統(tǒng)的發(fā)展和創(chuàng)新。這樣的高度需要增大柱和梁的尺寸,這樣以來可以使建筑物更加堅(jiān)固以至于在允許的限度范圍內(nèi)承受風(fēng)荷載而不產(chǎn)生彎曲和傾斜。過分的傾斜會(huì)導(dǎo)致建筑的隔離構(gòu)件、頂棚以及其他建筑細(xì)部產(chǎn)生循環(huán)破壞。

49、除此之外,過大的搖動(dòng)也會(huì)使建筑的使用者們因感覺到這樣的的晃動(dòng)而產(chǎn)生不舒服的感覺。無論是鋼筋混凝土結(jié)構(gòu)系統(tǒng)還是鋼結(jié)構(gòu)系統(tǒng)都充分利用了整個(gè)建筑的剛度潛力,因此不能指望利用多余的剛度來限制側(cè)向位移。在鋼結(jié)構(gòu)系統(tǒng)設(shè)計(jì)中,經(jīng)濟(jì)預(yù)算是根據(jù)每平方英寸地板面積上的鋼材的數(shù)量確定的。圖示1中的曲線A顯示了常規(guī)框架的平均單位的重量隨著樓層數(shù)的增加而增加的情況。而曲線B顯示則顯示的是在框架被保護(hù)而不受任何側(cè)向荷載的情況下的鋼材的平均重量。上界和下界之間的區(qū)域顯示的是傳統(tǒng)梁柱框架的造價(jià)隨高度而變化的情況。而結(jié)構(gòu)工程師改進(jìn)結(jié)構(gòu)系統(tǒng)的目的就是減少這部分造價(jià)。鋼結(jié)構(gòu)中的體系:鋼結(jié)構(gòu)的高層建筑的發(fā)展是幾種結(jié)構(gòu)體系創(chuàng)新的結(jié)果。

50、這些創(chuàng)新的結(jié)構(gòu)已經(jīng)被廣泛地應(yīng)用于辦公大樓和公寓建筑中。剛性帶式桁架的框架結(jié)構(gòu):為了聯(lián)系框架結(jié)構(gòu)的外柱和內(nèi)部帶式桁架,可以在建筑物的中間和頂部設(shè)置剛性帶式桁架。1974年在米望基建造的威斯康森銀行大樓就是一個(gè)很好的例子??蚣芡步Y(jié)構(gòu):如果所有的構(gòu)件都用某種方式互相聯(lián)系在一起,整個(gè)建筑就像是從地面發(fā)射出的一個(gè)空心筒體或是一個(gè)剛性盒子一樣。這個(gè)時(shí)候此高層建筑的整個(gè)結(jié)構(gòu)抵抗風(fēng)荷載的所有強(qiáng)度和剛度將達(dá)到最大的效率。這種特殊的結(jié)構(gòu)體系首次被芝加哥的43層鋼筋混凝土的德威特紅棕色的公寓大樓所采用。但是這種結(jié)構(gòu)體系的的所有應(yīng)用中最引人注目的還要屬在紐約建造的100層的雙筒結(jié)構(gòu)的世界貿(mào)易中心大廈。斜撐桁架筒體:建

51、筑物的外柱可以彼此獨(dú)立的間隔布置,也可以借助于通過梁柱中心線的交叉的斜撐構(gòu)件聯(lián)系在一起,形成一個(gè)共同工作的筒體結(jié)構(gòu)。這種高度的結(jié)構(gòu)體系首次被芝加哥的JohnHancock中心大廈采用。這項(xiàng)工程所耗用的剛才量與傳統(tǒng)的四十層高樓的用鋼量相當(dāng)。筒體:隨著對(duì)更高層建筑的要求不斷地增大。筒體結(jié)構(gòu)和斜撐桁架筒體被設(shè)計(jì)成捆束狀以形成更大的筒體來保持建筑物的高效能。芝加哥的110層的SearsRoebuck總部大樓有9個(gè)筒體,從基礎(chǔ)開始分成三個(gè)部分。這些獨(dú)立筒體中的終端處在不同高度的建筑體中,這充分體現(xiàn)出了這種新式結(jié)構(gòu)觀念的建筑風(fēng)格自由化的潛能。這座建筑物1450英尺(442米)高,是世界上最高的大廈。薄殼筒

52、體系統(tǒng):這種筒體結(jié)構(gòu)系統(tǒng)的設(shè)計(jì)是為了增強(qiáng)超高層建筑抵抗側(cè)力的能力(風(fēng)荷載和地震荷載)以及建筑的抗側(cè)移能力。薄殼筒體是筒體系統(tǒng)的又一大飛躍。薄殼筒體的進(jìn)步是利用高層建筑的正面(墻體和板)作為與筒體共同作用的結(jié)構(gòu)構(gòu)件,為高層建筑抵抗側(cè)向荷載提供了一個(gè)有效的途徑,而且可獲得不用設(shè)柱,成本較低,使用面積與建筑面積之比又大的室內(nèi)空間。由于薄殼立面的貢獻(xiàn),整個(gè)框架筒的構(gòu)件無需過大的質(zhì)量。這樣以來使得結(jié)構(gòu)既輕巧又經(jīng)濟(jì)。所有的典型柱和窗下墻托梁都是軋制型材,最大程度上減小了組合構(gòu)件的使用和耗費(fèi)。托梁周圍的厚度也可適當(dāng)?shù)臏p小。而可能占據(jù)寶貴空間的墻上鐓梁的尺寸也可以最大程度地得到控制。這種結(jié)構(gòu)體系已被建造在匹茲

53、堡洲的OneMellon銀行中心所運(yùn)用。鋼筋混凝土中的各體系:雖然鋼結(jié)構(gòu)的高層建筑起步比較早,但是鋼筋混凝土的高層建筑的發(fā)展非??欤瑹o論在辦公大樓還是公寓住宅方面都成為剛結(jié)構(gòu)體系的有力競(jìng)爭(zhēng)對(duì)手。框架筒:像上面所提到的,框架筒構(gòu)思首次被43層的迪威斯公寓大樓所采用。在這座大樓中,外柱的柱距為5.5英尺(1.68米)。而內(nèi)柱則需要支撐8英寸厚的無梁板。筒中筒結(jié)構(gòu):另一種針對(duì)于辦公大樓的鋼筋混凝土體系把傳統(tǒng)的剪力墻結(jié)構(gòu)與外框架筒相結(jié)合。該體系由柱距很小的外框架與圍繞中心設(shè)備區(qū)的剛性剪力墻筒組成。這種筒中筒結(jié)構(gòu)(如插圖2)使得當(dāng)前世界上最高的輕質(zhì)混凝土大樓(在休斯頓建造的獨(dú)殼購(gòu)物中心大廈)的整體造價(jià)只

54、與35層的傳統(tǒng)剪力墻結(jié)構(gòu)相當(dāng)。鋼結(jié)構(gòu)與混凝土結(jié)構(gòu)的聯(lián)合體系也有所發(fā)展。Skidmore,Owings和Merrill共同設(shè)計(jì)的混合體系就是一個(gè)好例子。在此體系中,外部的混凝土框架筒包圍著內(nèi)部的鋼框架,從而結(jié)合了鋼筋混凝土體系與鋼結(jié)構(gòu)體系各自的優(yōu)點(diǎn)。在新奧爾良建造的52層的獨(dú)殼廣場(chǎng)大廈就是運(yùn)用了這種體系。鋼結(jié)構(gòu)是指在建筑物結(jié)構(gòu)中鋼材起著主導(dǎo)作用的結(jié)構(gòu),是一個(gè)很寬泛的概念。大部分的鋼結(jié)構(gòu)都包括建筑設(shè)計(jì),工程技術(shù)、工藝。通常還包括以主梁、次梁、桿件,板等形式存在的鋼的熱軋加工工藝。上個(gè)世紀(jì)七十年代,除了對(duì)其他材料的需求在增長(zhǎng),鋼結(jié)構(gòu)仍然保持著對(duì)于來自美國(guó)、英國(guó)、日本、西德、法國(guó)等國(guó)家的鋼材廠鋼材的大

55、量需求。發(fā)展歷史:早在Bessemer和Siemens-Marton(開放式爐)工藝出現(xiàn)以前,鋼結(jié)構(gòu)就已經(jīng)有幾十年的歷史了。而直到此工藝問世之后才使得鋼材可以大批生產(chǎn)出來供結(jié)構(gòu)所用。對(duì)鋼結(jié)構(gòu)諸多問題的研究開始于鐵結(jié)構(gòu)的使用,當(dāng)時(shí)很著名的研究對(duì)象是1977年在英國(guó)建造的橫跨斯沃河的Coalbrookdale大橋。這座大橋以及后來的鐵橋設(shè)計(jì)再加上蒸汽鍋爐、鐵船身的設(shè)計(jì)都刺激了建筑安裝設(shè)計(jì)以及連接工藝的發(fā)展。鐵結(jié)構(gòu)對(duì)材料的需求量較小是優(yōu)勝于磚石結(jié)構(gòu)的主要方面。長(zhǎng)久以來一直用木材制作的三角桁架也換成鐵制的了。承受由直接荷載產(chǎn)生的重力作用的受壓構(gòu)件常用鑄鐵制造,而承受由懸掛荷載產(chǎn)生的推力作用的受拉構(gòu)件常

56、用熟鐵制造。把鐵加熱到塑性狀態(tài),使之從卷狀轉(zhuǎn)化為扁平狀與圓狀之間的某一狀態(tài)的工藝,早在1800年就得以發(fā)展了。隨后,1819年角鋼問世,1894年第一個(gè)工字鋼被建造出來作為巴黎火車站的頂梁。此工字鋼長(zhǎng)17.7英尺)(5.4米)。1851年英國(guó)的JosephPaxtond為倫敦博覽會(huì)建造了水晶宮。據(jù)說當(dāng)時(shí)他已有這樣的骨架結(jié)構(gòu)構(gòu)思:用比較細(xì)的鐵梁作為玻璃幕墻的骨架。此建筑的風(fēng)荷載抵抗力是由對(duì)角拉桿所提供的。在金屬結(jié)構(gòu)的發(fā)展歷史中,有兩個(gè)標(biāo)志性事件:首先是從木橋發(fā)展而來的格構(gòu)梁由木制轉(zhuǎn)化為鐵制;其次是鍛鐵制的受拉構(gòu)件與鑄鐵制的受壓構(gòu)件受熱后通過鉚釘連接工藝的發(fā)展。十九世紀(jì)五六十年代,Bessemer與Siemens-Martin工藝的發(fā)展使鋼材的生產(chǎn)能滿足結(jié)構(gòu)的需求。鋼的受拉強(qiáng)度與受壓強(qiáng)度都好于鐵。這種新型的金屬常被有想象力的工程師所利用,尤其倍受那些參與過英國(guó)、歐洲以及美國(guó)的道橋建設(shè)的工程師的喜愛。其中一個(gè)很好的例子就是Eads大橋(也被稱為路易斯洲大橋)(1867-1874)。在這座大橋中,每隔500英尺(152.5米)設(shè)有由鋼管加強(qiáng)肋形成的拱。英國(guó)的FirthofForth懸索橋設(shè)有管件支撐,直徑大約為12英尺(3.66米),長(zhǎng)度為350英尺(107)米。這些大橋以及其他結(jié)構(gòu)在引導(dǎo)鋼結(jié)構(gòu)的發(fā)展,規(guī)范的實(shí)施,許用應(yīng)力的設(shè)計(jì)方面起到了很重要的作用。1907年Quebec懸索

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論