甘肅省酒泉市酒泉中學2023學年高三第二次調研數(shù)學試卷(含解析)_第1頁
甘肅省酒泉市酒泉中學2023學年高三第二次調研數(shù)學試卷(含解析)_第2頁
甘肅省酒泉市酒泉中學2023學年高三第二次調研數(shù)學試卷(含解析)_第3頁
甘肅省酒泉市酒泉中學2023學年高三第二次調研數(shù)學試卷(含解析)_第4頁
甘肅省酒泉市酒泉中學2023學年高三第二次調研數(shù)學試卷(含解析)_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、2023學年高考數(shù)學模擬測試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設,用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,已知函數(shù)(),則函數(shù)的值域為( )ABCD2曲線在點處的切線方程為,則( )ABC4D83

2、已知函數(shù),若對,且,使得,則實數(shù)的取值范圍是( )ABCD4已知函數(shù),.若存在,使得成立,則的最大值為( )ABCD5古希臘數(shù)學家畢達哥拉斯在公元前六世紀發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進一步研究發(fā)現(xiàn)后續(xù)三個“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28恰好在同一組的概率為 ABCD6已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為( )ABCD7函數(shù)的部分圖象大致是( )ABCD8過拋物線的焦點作直線與拋物線在第一象限交于點A,與準線在第三象限交于點B,過點作準線的垂線,垂足

3、為.若,則( )ABCD9 “中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學著作孫子算經(jīng)卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構成一個數(shù)列,則該數(shù)列各項之和為( )A56383B57171C59189D6124210已知函數(shù),若對任意的,存在實數(shù)滿足,使得,則的最大值是( )A3B2C4D511橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個角度,水面的邊界即是橢圓.現(xiàn)有一

4、高度為12厘米,底面半徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是( )ABCD12如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結論錯誤的是( ) A2019年12月份,全國居民消費價格環(huán)比持平B2018年12月至2019年12月全國

5、居民消費價格環(huán)比均上漲C2018年12月至2019年12月全國居民消費價格同比均上漲D2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格二、填空題:本題共4小題,每小題5分,共20分。13在中,角,的對邊分別是,若,則的面積的最大值為_.14數(shù)據(jù)的標準差為_15已知為橢圓的左、右焦點,點在橢圓上移動時,的內(nèi)心的軌跡方程為_16從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為_.(用數(shù)字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在中,角、所對的邊分別為、,且

6、.(1)求角的大??;(2)若,的面積為,求及的值.18(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.19(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.20(12分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設數(shù)列的前項和為,證明:.21(12分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規(guī)定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用

7、過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數(shù).該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.每臺設備一個月中使用的易耗品的件數(shù)678型號A30300頻數(shù)型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數(shù)超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設備時應同時購買20件還是21件易耗品?22(10分)如圖,在三棱柱中, 平面ABC.(1)證明:

8、平面平面(2)求二面角的余弦值.2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質求得的取值范圍,由此求得的值域.【題目詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,所以,所以的值域為.故選:B【答案點睛】本小題考查函數(shù)的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.2、B【答案解析】求函數(shù)導數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【

9、題目詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【答案點睛】本題主要考查了導數(shù)的幾何意義,切線方程,屬于中檔題.3、D【答案解析】先求出的值域,再利用導數(shù)討論函數(shù)在區(qū)間上的單調性,結合函數(shù)值域,由方程有兩個根求參數(shù)范圍即可.【題目詳解】因為,故,當時,故在區(qū)間上單調遞減;當時,故在區(qū)間上單調遞增;當時,令,解得,故在區(qū)間單調遞減,在區(qū)間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數(shù),當時,;根據(jù)題意,對,且,使得成立,只需,即可得,解得.故選:D.【答案點睛】本題考查利用導數(shù)研究由方程根的個數(shù)求參數(shù)范圍的問題,涉及利用導數(shù)研究函數(shù)單調性以及函數(shù)值域的問題,屬綜合困難

10、題.4、C【答案解析】由題意可知,由可得出,利用導數(shù)可得出函數(shù)在區(qū)間上單調遞增,函數(shù)在區(qū)間上單調遞增,進而可得出,由此可得出,可得出,構造函數(shù),利用導數(shù)求出函數(shù)在上的最大值即可得解.【題目詳解】,由于,則,同理可知,函數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調遞增,同理可知,函數(shù)在區(qū)間上單調遞增,則,則,構造函數(shù),其中,則.當時,此時函數(shù)單調遞增;當時,此時函數(shù)單調遞減.所以,.故選:C.【答案點睛】本題考查代數(shù)式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.5、B【答案解析】推導出基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),由此能求出6和28恰好在

11、同一組的概率【題目詳解】解:將五個“完全數(shù)”6,28,496,8128,33550336,隨機分為兩組,一組2個,另一組3個,基本事件總數(shù),6和28恰好在同一組包含的基本事件個數(shù),6和28恰好在同一組的概率故選:B【答案點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是基礎題6、D【答案解析】設,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據(jù),得到方程,即可求出參數(shù)的值;【題目詳解】解:設,由,得,解得或,.又由,得,或,又,代入解得.故選:D【答案點睛】本題考查直線與拋物線的綜合應用,弦長公式的應用,屬于中檔題.7、C【答案

12、解析】判斷函數(shù)的性質,和特殊值的正負,以及值域,逐一排除選項.【題目詳解】,函數(shù)是奇函數(shù),排除,時,時,排除,當時, 時,排除,符合條件,故選C.【答案點睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,屬于基礎題型,一般根據(jù)選項判斷函數(shù)的奇偶性,零點,特殊值的正負,以及單調性,極值點等排除選項.8、C【答案解析】需結合拋物線第一定義和圖形,得為等腰三角形,設準線與軸的交點為,過點作,再由三角函數(shù)定義和幾何關系分別表示轉化出,結合比值與正切二倍角公式化簡即可【題目詳解】如圖,設準線與軸的交點為,過點作.由拋物線定義知,所以,所以.故選:C【答案點睛】本題考查拋物線的幾何性質,三角函數(shù)的性質,數(shù)形結合思

13、想,轉化與化歸思想,屬于中檔題9、C【答案解析】根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構成等差數(shù)列,然后根據(jù)等差數(shù)列的前項和公式,可得結果.【題目詳解】被5除余3且被7除余2的正整數(shù)構成首項為23,公差為的等差數(shù)列,記數(shù)列則 令,解得.故該數(shù)列各項之和為.故選:C.【答案點睛】本題考查等差數(shù)列的應用,屬基礎題。10、A【答案解析】根據(jù)條件將問題轉化為,對于恒成立,然后構造函數(shù),然后求出的范圍,進一步得到的最大值.【題目詳解】,對任意的,存在實數(shù)滿足,使得, 易得,即恒成立,對于恒成立,設,則,令,在恒成立,故存在,使得,即,當時,單調遞減;當時,單調遞增.,將代入得:,且,故選:A

14、【答案點睛】本題考查了利用導數(shù)研究函數(shù)的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.11、C【答案解析】根據(jù)題意可知當玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質即可確定此時橢圓的離心率,進而確定離心率的取值范圍.【題目詳解】當玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大.此時橢圓長軸長為,短軸長為6,所以橢圓離心率,所以.故選:C【答案點睛】本題考查了橢圓的定義及其性質的簡單應用,屬于基礎題.12、D【答案解析】先對圖表數(shù)據(jù)的分析處理,再結簡單的合情推理一一檢驗即可【題目詳解】由折線圖易知A、C正確;2019年3月份

15、及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,則有,所以D正確.故選:D【答案點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】化簡得到,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計算得到答案.【題目詳解】,即,故.根據(jù)余弦定理:,即.當時等號成立,故.故答案為:.【答案點睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學生的綜合應用能力和計算能力.14、【答案解析】先計算平均數(shù)再求解

16、方差與標準差即可.【題目詳解】解:樣本的平均數(shù), 這組數(shù)據(jù)的方差是 標準差,故答案為:【答案點睛】本題主要考查了標準差的計算,屬于基礎題.15、【答案解析】考查更為一般的問題:設P為橢圓C:上的動點,為橢圓的兩個焦點,為PF1F2的內(nèi)心,求點I的軌跡方程解法一:如圖,設內(nèi)切圓I與F1F2的切點為H,半徑為r,且F1H=y,F(xiàn)2H=z,PF1=x+y,PF2=x+z,則.直線IF1與IF2的斜率之積:,而根據(jù)海倫公式,有PF1F2的面積為因此有.再根據(jù)橢圓的斜率積定義,可得I點的軌跡是以F1F2為長軸,離心率e滿足的橢圓,其標準方程為.解法二:令,則三角形PF1F2的面積:,其中r為內(nèi)切圓的半徑

17、,解得.另一方面,由內(nèi)切圓的性質及焦半徑公式得:從而有消去得到點I的軌跡方程為:.本題中:,代入上式可得軌跡方程為:.16、1【答案解析】由排列組合及分類討論思想分別討論:設甲參加,乙不參加,設乙參加,甲不參加,設甲,乙都不參加,可得不同的選法種數(shù)為9+9+51,得解【題目詳解】設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合得:不同的選法種數(shù)為9+9+51,故答案為:1【答案點睛】本題考查了排列組合及分類討論思想

18、,準確分類及計算是關鍵,屬中檔題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2);【答案解析】(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【題目詳解】(1)因為,可得:,或(舍),.(2)由余弦定理,得所以,故,又,所以,所以.【答案點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.18、(1);(2).【答案解析】(1)根據(jù)焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向

19、量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結合函數(shù)單調性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【題目詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設直線的方程為,點滿足,則為中點,點在圓上,設,聯(lián)立直線與橢圓方程,化簡可得,所以 則,化簡可得,而 由弦長公式代入可得為中點,則 點在圓上,代入化簡可得,所以令,則,令,則令,則,所以, 因為在內(nèi)單調遞增,所以,即所以【答案點睛】本題考查了橢圓的標準方程求法,直線與橢圓

20、的位置關系綜合應用,由韋達定理研究參數(shù)間的關系,平面向量的線性運算與數(shù)量積運算,弦長公式的應用及換元法在求取值范圍問題中的綜合應用,計算量大,屬于難題.19、(1);(2)或.【答案解析】(1)聯(lián)立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據(jù)根的判別式,即可求出結論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【題目詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數(shù)根,整理得,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,.,即,整理得,解得或或.又,或時,的面積為.【答案點睛】本

21、題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數(shù)關系解決相交弦問題,考查計算求解能力,屬于中檔題.20、(1);(2)見解析.【答案解析】(1)令,利用可求得數(shù)列的通項公式,由此可得出數(shù)列的通項公式;(2)求得,利用裂項相消法求得,進而可得出結論.【題目詳解】(1)令,當時,;當時,則,故;(2),.【答案點睛】本題考查利用求通項,同時也考查了裂項相消法求和,考查計算能力與推理能力,屬于基礎題.21、(1)(2)應該購買21件易耗品【答案解析】(1)由統(tǒng)計表中數(shù)據(jù)可得型號分別為在一個月使用易耗品的件數(shù)為6,7,8時的概率,設該單位三臺設備一個月中使用易耗品的件數(shù)總數(shù)為X,則,利用獨立事件概率公式進而求解即可;(2)由題可得X所有可能的取值為,即可求得對應的概率,再分別討論該單位在購買設備時應同時購買20件易耗品和21件

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論