


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.《九章算術》是我國古代第一部自成體系的數(shù)學專著,代表了東方數(shù)學的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”如圖所示,請根據(jù)所學知識計算:圓形木材的直徑AC是()A.13寸 B.20寸 C.26寸 D.28寸2.下列四個函數(shù)圖象中,當x<0時,函數(shù)值y隨自變量x的增大而減小的是()A. B. C. D.3.已知關于x的不等式組至少有兩個整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個 B.5個 C.6個 D.7個4.已知二次函數(shù)的圖象如圖所示,若,是這個函數(shù)圖象上的三點,則的大小關系是()A. B. C. D.5.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結論:①abc<0;②3b+4c<0;③c>﹣1;④關于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結論個數(shù)是()A.1 B.2 C.3 D.46.如圖,一張半徑為的圓形紙片在邊長為的正方形內任意移動,則在該正方形內,這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.7.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形8.如圖,共有12個大不相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分.現(xiàn)從其余的小正方形中任取一個涂上陰影,則能構成這個正方體的表面展開圖的概率是()A. B. C. D.9.關于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,則()A.a(chǎn)≠±1 B.a(chǎn)=1 C.a(chǎn)=﹣1 D.a(chǎn)=±110.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結果每件作服裝仍可獲利15元,則這種服裝每件的成本是()A.120元 B.125元 C.135元 D.140元11.2022年冬奧會,北京、延慶、張家口三個賽區(qū)共25個場館,北京共12個,其中11個為2008年奧運會遺留場館,唯一一個新建的場館是國家速滑館,可容納12000人觀賽,將12000用科學記數(shù)法表示應為()A.12×10 B.1.2×10 C.1.2×10 D.0.12×1012.如圖是將正方體切去一個角后形成的幾何體,則該幾何體的左視圖為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側面上,過點和點嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.14.分解因式:4a3b﹣ab=_____.15.一個圓錐的側面展開圖是半徑為6,圓心角為120°的扇形,那么這個圓錐的底面圓的半徑為____.16.因式分解.17.如果關于x的方程(m為常數(shù))有兩個相等實數(shù)根,那么m=______.18.如圖,在菱形紙片中,,,將菱形紙片翻折,使點落在的中點處,折痕為,點,分別在邊,上,則的值為________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)據(jù)某省商務廳最新消息,2018年第一季度該省企業(yè)對“一帶一路”沿線國家的投資額為10億美元,第三季度的投資額增加到了14.4億美元.求該省第二、三季度投資額的平均增長率.20.(6分)某車間的甲、乙兩名工人分別同時生產(chǎn)只同一型號的零件,他們生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:(1)甲每分鐘生產(chǎn)零件_______只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件_______只;(2)若乙提高速度后,乙的生產(chǎn)速度是甲的倍,請分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件(只)與生產(chǎn)時間(分)的函數(shù)關系式;(3)當兩人生產(chǎn)零件的只數(shù)相等時,求生產(chǎn)的時間;并求出此時甲工人還有多少只零件沒有生產(chǎn).21.(6分)如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).(1)求該拋物線的解析式;(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.22.(8分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF=CE=AE.(1)說明四邊形ACEF是平行四邊形;(2)當∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.23.(8分)臺州市某水產(chǎn)養(yǎng)殖戶進行小龍蝦養(yǎng)殖.已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價p(元/千克)與時間第t(天)之間的函數(shù)關系為:p=t+16,日銷售量y(千克)與時間第t(天)之間的函數(shù)關系如圖所示:(1)求日銷售量y與時間t的函數(shù)關系式?(2)哪一天的日銷售利潤最大?最大利潤是多少?(3)該養(yǎng)殖戶有多少天日銷售利潤不低于2400元?24.(10分)有一水果店,從批發(fā)市場按4元/千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質,平均每天有50千克變質丟棄,且每存放一天需要各種費用300元,據(jù)預測,每天每千克價格上漲0.1元.設x天后每千克蘋果的價格為p元,寫出p與x的函數(shù)關系式;若存放x天后將蘋果一次性售出,設銷售總金額為y元,求出y與x的函數(shù)關系式;該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?25.(10分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結果保留根號形式)26.(12分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.27.(12分)某數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長),直線MN垂直于地面,垂足為點P.在地面A處測得點M的仰角為58°、點N的仰角為45°,在B處測得點M的仰角為31°,AB=5米,且A、B、P三點在一直線上.請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:設⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解方程即可.詳解:設⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解得r=13,∴⊙O的直徑為26寸,故選C.點睛:本題考查垂徑定理、勾股定理等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題2、D【解析】
A、根據(jù)函數(shù)的圖象可知y隨x的增大而增大,故本選項錯誤;B、根據(jù)函數(shù)的圖象可知在第二象限內y隨x的增大而減增大,故本選項錯誤;C、根據(jù)函數(shù)的圖象可知,當x<0時,在對稱軸的右側y隨x的增大而減小,在對稱軸的左側y隨x的增大而增大,故本選項錯誤;D、根據(jù)函數(shù)的圖象可知,當x<0時,y隨x的增大而減小;故本選項正確.故選D.【點睛】本題考查了函數(shù)的圖象,函數(shù)的增減性,熟練掌握各函數(shù)的性質是解題的關鍵.3、A【解析】
依據(jù)不等式組至少有兩個整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個,故選:A.【點睛】此題考查的是一元一次不等式組的解法和三角形的三邊關系的運用,求不等式組的解集應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.4、A【解析】
先求出二次函數(shù)的對稱軸,結合二次函數(shù)的增減性即可判斷.【詳解】解:二次函數(shù)的對稱軸為直線,∵拋物線開口向下,∴當時,y隨x增大而增大,∵,∴故答案為:A.【點睛】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關鍵是熟悉二次函數(shù)的增減性.5、B【解析】
由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設成立,故④正確.綜上可知正確的結論有三個:③④.故選B.【點睛】本題主要考查二次函數(shù)的圖象和性質.熟練掌握圖象與系數(shù)的關系以及二次函數(shù)與方程、不等式的關系是解題的關鍵.特別是利用好題目中的OA=OC,是解題的關鍵.6、C【解析】
這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關鍵.7、A【解析】
利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【點睛】本題考查了命題與定理的知識,解題的關鍵是能夠了解矩形和菱形的判定定理,難度不大.8、D【解析】
由正方體表面展開圖的形狀可知,此正方體還缺一個上蓋,故應在圖中四塊相連的空白正方形中選一塊,再根據(jù)概率公式解答即可.【詳解】因為共有12個大小相同的小正方形,其中陰影部分的5個小正方形是一個正方體的表面展開圖的一部分,所以剩下7個小正方形.在其余的7個小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的小正方形有4個,因此先從其余的小正方形中任取一個涂上陰影,能構成這個正方體的表面展開圖的概率是.故選D.【點睛】本題考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,掌握概率公式是本題的關鍵.9、C【解析】
根據(jù)一元一次方程的定義即可求出答案.【詳解】由題意可知:,解得a=?1故選C.【點睛】本題考查一元二次方程的定義,解題的關鍵是熟練運用一元二次方程的定義,本題屬于基礎題型.10、B【解析】試題分析:通過理解題意可知本題的等量關系,即每件作服裝仍可獲利=按成本價提高40%后標價,又以8折賣出,根據(jù)這兩個等量關系,可列出方程,再求解.解:設這種服裝每件的成本是x元,根據(jù)題意列方程得:x+15=(x+40%x)×80%解這個方程得:x=125則這種服裝每件的成本是125元.故選B.考點:一元一次方程的應用.11、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】數(shù)據(jù)12000用科學記數(shù)法表示為1.2×104,故選:B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.12、C【解析】看到的棱用實線體現(xiàn).故選C.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
要求絲線的長,需將圓柱的側面展開,進而根據(jù)“兩點之間線段最短”得出結果,在求線段長時,根據(jù)勾股定理計算即可.【詳解】解:如圖,把圓柱的側面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.
∵圓柱底面的周長為4dm,圓柱高為2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴這圈金屬絲的周長最小為2AC=4dm.
故答案為:4dm【點睛】本題考查了平面展開-最短路徑問題,圓柱的側面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側面展開成矩形,“化曲面為平面”是解題的關鍵.14、ab(2a+1)(2a-1)【解析】
先提取公因式再用公式法進行因式分解即可.【詳解】4a3b-ab=ab(4a2-1)=ab(2a+1)(2a-1)【點睛】此題主要考查因式分解單項式,解題的關鍵是熟知因式分解的方法.15、2【解析】
試題分析:設此圓錐的底面半徑為r,根據(jù)圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得r=2cm.考點:圓錐側面展開扇形與底面圓之間的關系.16、【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.17、1【解析】析:本題需先根據(jù)已知條件列出關于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m為常數(shù))有兩個相等實數(shù)根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案為118、【解析】
過點作,交延長線于,連接,交于,根據(jù)折疊的性質可得,,根據(jù)同角的余角相等可得,可得,由平行線的性質可得,根據(jù)的三角函數(shù)值可求出、的長,根據(jù)為中點即可求出的長,根據(jù)余弦的定義的值即可得答案.【詳解】過點作,交延長線于,連接,交于,∵四邊形是菱形,∴,∵將菱形紙片翻折,使點落在的中點處,折痕為,∴,,∵,,∴,∴,∵,∴,∴,∵,,∴,∴,,∵為中點,∴,∴,∴,∴.故答案為【點睛】本題考查了折疊的性質、菱形的性質及三角函數(shù)的定義,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,熟練掌握三角函數(shù)的定義并熟記特殊角的三角函數(shù)值是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、第二、三季度的平均增長率為20%.【解析】
設增長率為x,則第二季度的投資額為10(1+x)萬元,第三季度的投資額為10(1+x)2萬元,由第三季度投資額為10(1+x)2=14.4萬元建立方程求出其解即可.【詳解】設該省第二、三季度投資額的平均增長率為x,由題意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增長率為20%.【點睛】本題考查了增長率問題的數(shù)量關系的運用,一元二次方程的解法的運用,解答時根據(jù)第三季度投資額為10(1+x)2=14.4建立方程是關鍵.20、(1)25,150;(2)y甲=25x(0≤x≤20),;(3)x=14,150【解析】
解:(1)甲每分鐘生產(chǎn)=25只;提高生產(chǎn)速度之前乙的生產(chǎn)速度==15只/分,故乙在提高生產(chǎn)速度之前已生產(chǎn)了零件:15×10=150只;(2)結合后圖象可得:甲:y甲=25x(0≤x≤20);乙提速后的速度為50只/分,故乙生產(chǎn)完500只零件還需7分鐘,乙:y乙=15x(0≤x≤10),當10<x≤17時,設y乙=kx+b,把(10,150)、(17,500),代入可得:10k+b=150,17k+b=500,解得:k=50,b=?350,故y乙=50x?350(10≤x≤17).綜上可得:y甲=25x(0≤x≤20);;(3)令y甲=y(tǒng)乙,得25x=50x?350,解得:x=14,此時y甲=y(tǒng)乙=350只,故甲工人還有150只未生產(chǎn).21、(1)y=﹣;(1)點K的坐標為(,0);(2)點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).【解析】試題分析:(1)把A、C兩點坐標代入拋物線解析式可求得a、c的值,可求得拋物線解析;(1)可求得點C關于x軸的對稱點C′的坐標,連接C′N交x軸于點K,再求得直線C′K的解析式,可求得K點坐標;(2)過點E作EG⊥x軸于點G,設Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關于m的解析式,再根據(jù)二次函數(shù)的性質可求得Q點的坐標;(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據(jù)等腰三角形的性質求得F點的坐標,進一步求得P點坐標即可.試題解析:(1)∵拋物線經(jīng)過點C(0,4),A(4,0),∴,解得,∴拋物線解析式為y=﹣x1+x+4;(1)由(1)可求得拋物線頂點為N(1,),如圖1,作點C關于x軸的對稱點C′(0,﹣4),連接C′N交x軸于點K,則K點即為所求,設直線C′N的解析式為y=kx+b,把C′、N點坐標代入可得,解得,∴直線C′N的解析式為y=x-4,令y=0,解得x=,∴點K的坐標為(,0);(2)設點Q(m,0),過點E作EG⊥x軸于點G,如圖1,由﹣x1+x+4=0,得x1=﹣1,x1=4,∴點B的坐標為(﹣1,0),AB=6,BQ=m+1,又∵QE∥AC,∴△BQE≌△BAC,∴,即,解得EG=;∴S△CQE=S△CBQ﹣S△EBQ=(CO-EG)·BQ=(m+1)(4-)==-(m-1)1+2.又∵﹣1≤m≤4,∴當m=1時,S△CQE有最大值2,此時Q(1,0);(4)存在.在△ODF中,(?。┤鬌O=DF,∵A(4,0),D(1,0),∴AD=OD=DF=1.又在Rt△AOC中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此時,點F的坐標為(1,1).由﹣x1+x+4=1,得x1=1+,x1=1﹣.此時,點P的坐標為:P1(1+,1)或P1(1﹣,1);(ⅱ)若FO=FD,過點F作FM⊥x軸于點M.由等腰三角形的性質得:OM=OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣x1+x+4=2,得x1=1+,x1=1﹣.此時,點P的坐標為:P2(1+,2)或P4(1﹣,2);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴AC=4.∴點O到AC的距離為1.而OF=OD=1<1,與OF≥1矛盾.∴在AC上不存在點使得OF=OD=1.此時,不存在這樣的直線l,使得△ODF是等腰三角形.綜上所述,存在這樣的直線l,使得△ODF是等腰三角形.所求點P的坐標為:(1+,1)或(1﹣,1)或(1+,2)或(1﹣,2).點睛:本題是二次函數(shù)綜合題,主要考查待定系數(shù)法、三角形全等的判定與性質、等腰三角形的性質等,能正確地利用數(shù)形結合思想、分類討論思想等進行解題是關鍵.22、(1)說明見解析;(2)當∠B=30°時,四邊形ACEF是菱形.理由見解析.【解析】試題分析:(1)證明△AEC≌△EAF,即可得到EF=CA,根據(jù)兩組對邊分別相等的四邊形是平行四邊形即可判斷;(2)當∠B=30°時,四邊形ACEF是菱形.根據(jù)直角三角形的性質,即可證得AC=EC,根據(jù)菱形的定義即可判斷.(1)證明:由題意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四邊形ACEF是平行四邊形.(2)解:當∠B=30°時,四邊形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位線,∴E是AB的中點,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四邊形ACEF是菱形.考點:菱形的判定;全等三角形的判定與性質;線段垂直平分線的性質;平行四邊形的判定.23、(1)y=﹣2t+200(1≤t≤80,t為整數(shù));(2)第30天的日銷售利潤最大,最大利潤為2450元;(3)共有21天符合條件.【解析】
(1)根據(jù)函數(shù)圖象,設解析式為y=kt+b,將(1,198)、(80,40)代入,利用待定系數(shù)法求解可得;
(2)設日銷售利潤為w,根據(jù)“總利潤=每千克利潤×銷售量”列出函數(shù)解析式,由二次函數(shù)的性質分別求得最值即可判斷;
(3)求出w=2400時t的值,結合函數(shù)圖象即可得出答案;【詳解】(1)設解析式為y=kt+b,將(1,198)、(80,40)代入,得:,解得:,∴y=﹣2t+200(1≤t≤80,t為整數(shù));(2)設日銷售利潤為w,則w=(p﹣6)y,當1≤t≤80時,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,∴當t=30時,w最大=2450;∴第30天的日銷售利潤最大,最大利潤為2450元.(3)由(2)得:當1≤t≤80時,w=﹣(t﹣30)2+2450,令w=2400,即﹣(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范圍是20≤t≤40,∴共有21天符合條件.【點睛】本題考查二次函數(shù)的應用,熟練掌握待定系數(shù)求函數(shù)解析式、由相等關系得出利潤的函數(shù)解析式、利用二次函數(shù)的圖象解不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遵義醫(yī)科大學《產(chǎn)品交互設計》2023-2024學年第二學期期末試卷
- 唐山工業(yè)職業(yè)技術學院《中醫(yī)四診技能》2023-2024學年第二學期期末試卷
- 河北東方學院《幼兒園教育環(huán)境創(chuàng)設》2023-2024學年第二學期期末試卷
- 做賬實操-代理記賬公司的利潤計算
- 入黨積極分子民主表
- 遼寧工程技術大學《男裝制版與工藝》2023-2024學年第二學期期末試卷
- 吉林航空職業(yè)技術學院《專題設計》2023-2024學年第二學期期末試卷
- 焦作大學《新聞評論與體育》2023-2024學年第二學期期末試卷
- 廣東酒店管理職業(yè)技術學院《抽樣設計與推斷》2023-2024學年第二學期期末試卷
- 湖北大學知行學院《結構化學A》2023-2024學年第二學期期末試卷
- 學做小小按摩師(課件)全國通用三年級上冊綜合實踐活動
- 陰道鏡檢查臨床醫(yī)學知識及操作方法講解培訓PPT
- AI09人工智能-多智能體
- 建設工程前期工作咨詢費收費計算表
- 行為矯正技術-課件
- 八年級物理下冊《實驗題》專項練習題及答案(人教版)
- 腦血管造影術后病人的護理查房
- 5.0Mt-a煉焦煤選煤廠初步設計-畢業(yè)論文
- 美術高考色彩備考教學策略
- 2023智聯(lián)招聘行測題庫
- 中國工筆花鳥畫
評論
0/150
提交評論