(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)04《五種平面向量數(shù)學(xué)思想》(解析版)_第1頁(yè)
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)04《五種平面向量數(shù)學(xué)思想》(解析版)_第2頁(yè)
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)04《五種平面向量數(shù)學(xué)思想》(解析版)_第3頁(yè)
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)04《五種平面向量數(shù)學(xué)思想》(解析版)_第4頁(yè)
(新高考)高考數(shù)學(xué)二輪復(fù)習(xí)核心考點(diǎn)重難點(diǎn)練習(xí)04《五種平面向量數(shù)學(xué)思想》(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重難點(diǎn)04五種平面向量數(shù)學(xué)思想題型一:函數(shù)與方程思想一、單選題1.(2022·浙江·高三專題練習(xí))已知在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0位于線段SKIPIF1<0上,當(dāng)SKIPIF1<0取得最小值時(shí),向量SKIPIF1<0與SKIPIF1<0的夾角的余弦值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由已知得SKIPIF1<0,再由向量數(shù)量積的定義表示SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì)求得其最值,再由向量夾角公式可得選項(xiàng).【詳解】因?yàn)樵赟KIPIF1<0中,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),因此在SKIPIF1<0中,SKIPIF1<0所以向量SKIPIF1<0與SKIPIF1<0的夾角的余弦值為SKIPIF1<0,故選:C.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)已知向量建立關(guān)于向量的模SKIPIF1<0的二次函數(shù),利用二次函數(shù)確定取得最值時(shí),SKIPIF1<0的值.2.(2020·陜西省洛南中學(xué)高三階段練習(xí)(文))已知向量SKIPIF1<0,向量SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的坐標(biāo)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,由向量垂直的坐標(biāo)表示和向量的模的計(jì)算求得選項(xiàng).【詳解】設(shè)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,又向量SKIPIF1<0,向量SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故選:C.【點(diǎn)睛】本題考查向量垂直的坐標(biāo)表示和向量的模的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.3.(2020·廣東珠?!じ呷A段練習(xí))已知P是邊長(zhǎng)為1的正方形ABCD邊上或正方形內(nèi)的一點(diǎn),則SKIPIF1<0的最大值是(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】構(gòu)建A為原點(diǎn),AB為x軸,AD為y軸的直角坐標(biāo)系用坐標(biāo)表示各頂點(diǎn),設(shè)SKIPIF1<0則可用坐標(biāo)表示SKIPIF1<0,由于SKIPIF1<0是兩個(gè)相互獨(dú)立的變量,即可將代數(shù)式中含SKIPIF1<0和SKIPIF1<0的部分分別作為獨(dú)立函數(shù)求最大值,它們的和即為SKIPIF1<0的最大值【詳解】構(gòu)建以A為原點(diǎn),AB為x軸,AD為y軸的直角坐標(biāo)系,如下圖示:由正方形ABCD邊長(zhǎng)為1,知:SKIPIF1<0,若令SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0;∴SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上SKIPIF1<0或SKIPIF1<0有最大值為0,SKIPIF1<0在SKIPIF1<0上SKIPIF1<0有最大值為1;∴SKIPIF1<0的最大值為1故選:C【點(diǎn)睛】本題考查了利用坐標(biāo)表示向量數(shù)量積求最值,首先構(gòu)建直角坐標(biāo)系將目標(biāo)向量用坐標(biāo)表示,根據(jù)數(shù)量積的坐標(biāo)公式得到函數(shù)式,進(jìn)而求最大值4.(2022·全國(guó)·高三專題練習(xí))已知平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,對(duì)角線SKIPIF1<0與SKIPIF1<0相交于點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0是線段SKIPIF1<0上一點(diǎn),則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】以SKIPIF1<0的中點(diǎn)為坐標(biāo)原點(diǎn),以SKIPIF1<0所在直線為SKIPIF1<0軸,以SKIPIF1<0所在直線為SKIPIF1<0軸,建立如圖所示的直角坐標(biāo)系,求出直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,求出SKIPIF1<0的解析式,再利用二次函數(shù)求出函數(shù)的最小值即得解.【詳解】如圖所示,以SKIPIF1<0的中點(diǎn)為坐標(biāo)原點(diǎn),以SKIPIF1<0所在直線為SKIPIF1<0軸,以SKIPIF1<0所在直線為SKIPIF1<0軸,建立如圖所示的直角坐標(biāo)系,則SKIPIF1<0,所以直線SKIPIF1<0的方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取到最小值SKIPIF1<0.故選:A.【點(diǎn)睛】本題主要考查平面向量的坐標(biāo)表示和運(yùn)算,考查函數(shù)最值的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,解決本題的關(guān)鍵是聯(lián)想到建立坐標(biāo)系利用坐標(biāo)來研究.5.(2020·全國(guó)·高三(文))已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0等于(

)A.4 B.3 C.2 D.1【答案】D【分析】由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.故選:SKIPIF1<0.【點(diǎn)睛】本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.二、多選題6.(2020·廣東·高三專題練習(xí))已知不共線的兩個(gè)單位向量SKIPIF1<0,若向量SKIPIF1<0與SKIPIF1<0的夾角為銳角,則符合上述條件的SKIPIF1<0值可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【分析】向量夾角為銳角時(shí),數(shù)量積應(yīng)大于0,從而求得參數(shù).【詳解】因?yàn)橄蛄縎KIPIF1<0與SKIPIF1<0的夾角為銳角,所以SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,觀察各選項(xiàng)可知符合條件的SKIPIF1<0值可以是SKIPIF1<0,SKIPIF1<0.故選:AB.三、雙空題7.(2020·全國(guó)·高三專題練習(xí)(文))已知向量SKIPIF1<0、SKIPIF1<0的夾角為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0_______,SKIPIF1<0在SKIPIF1<0方向上的投影等于_______.【答案】

SKIPIF1<0

1【解析】根據(jù)條件可求得SKIPIF1<0,進(jìn)行數(shù)量積的運(yùn)算,便可由SKIPIF1<0得出SKIPIF1<0,解該方程即可求得SKIPIF1<0的值;

根據(jù)投影的計(jì)算公式即可得出SKIPIF1<0在SKIPIF1<0方向上的投影.【詳解】根據(jù)條件,SKIPIF1<0;

SKIPIF1<0;

SKIPIF1<0;

解得SKIPIF1<0或SKIPIF1<0(舍去);

(2)SKIPIF1<0在SKIPIF1<0上的投影為SKIPIF1<0,故答案為:SKIPIF1<0;1.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,關(guān)鍵在于準(zhǔn)確地運(yùn)用相應(yīng)的公式,理解向量數(shù)量積的含義,屬于基礎(chǔ)題.8.(2019·浙江杭州·高三階段練習(xí))若向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為________,最大值為________.【答案】

12

SKIPIF1<0【分析】設(shè)SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,根據(jù)向量的運(yùn)算,得到所以SKIPIF1<0,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】由題意,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的最小值為12,最大值為SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<0【點(diǎn)睛】本題主要考查了平面向量的模、基本不等式的應(yīng)用,考查考生分析問題、解決問題的能力,考查邏輯推理、數(shù)學(xué)運(yùn)算能力.四、填空題9.(2022·浙江·高三專題練習(xí))SKIPIF1<0中,SKIPIF1<0,且對(duì)于SKIPIF1<0,SKIPIF1<0最小值為SKIPIF1<0,則SKIPIF1<0_____.【答案】SKIPIF1<0【解析】利用向量的減法運(yùn)算和數(shù)量積,并借助余弦定理,化簡(jiǎn)SKIPIF1<0,可得到SKIPIF1<0,化簡(jiǎn)SKIPIF1<0,并利用二次函數(shù)求最值,求出SKIPIF1<0的最小值,且使最小值等于SKIPIF1<0,可得SKIPIF1<0,進(jìn)而得出SKIPIF1<0,最后利用余弦定理即可得解.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了向量的減法運(yùn)算和數(shù)量積,余弦定理以及二次函數(shù)求最值問題,考查學(xué)生的運(yùn)算求解能力,屬于綜合題,難度較大.利用向量的減法運(yùn)算和數(shù)量積,并借助余弦定理,化簡(jiǎn)SKIPIF1<0,得出三角形三邊的關(guān)系是解題的關(guān)鍵.10.(2020·浙江·高三專題練習(xí))如圖,已知正方形SKIPIF1<0,點(diǎn)E,F(xiàn)分別為線段SKIPIF1<0,SKIPIF1<0上的動(dòng)點(diǎn),且SKIPIF1<0,設(shè)SKIPIF1<0(x,SKIPIF1<0),則SKIPIF1<0的最大值為______.【答案】SKIPIF1<0【解析】設(shè)邊長(zhǎng)為1,SKIPIF1<0,建立直角坐標(biāo)系,求得SKIPIF1<0的坐標(biāo),根據(jù)題設(shè)用SKIPIF1<0表示出SKIPIF1<0,再利用函數(shù)的性質(zhì),即可求解.【詳解】建立如圖所示的直角坐標(biāo)系,并設(shè)邊長(zhǎng)為1,SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0其中SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題主要考查了平面向量的基本定理,向量的坐標(biāo)運(yùn)算,以及利用基本不等式求最值的應(yīng)用,其中解答中將平面向量問題坐標(biāo)化,通過數(shù)形結(jié)合求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及推理與運(yùn)算能力.11.(2020·江蘇·高三專題練習(xí))如圖,在平面四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為_______.【答案】SKIPIF1<0【解析】根據(jù)題意要求SKIPIF1<0的值,則要求出SKIPIF1<0中SKIPIF1<0的值,故考慮以點(diǎn)SKIPIF1<0為原點(diǎn),建立直角坐標(biāo)系,然后按照兩向量相等,則對(duì)應(yīng)坐標(biāo)相等,進(jìn)而可求解.【詳解】解:如圖建立直角坐標(biāo)系:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,所以SKIPIF1<0,因?yàn)樵赟KIPIF1<0中,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由題知SKIPIF1<0,是等腰三角形.所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查向量的線性運(yùn)算,當(dāng)直接運(yùn)用向量的三角形法則與平行四邊形法則較困難時(shí),可借助坐標(biāo),轉(zhuǎn)化成兩向量相等,則對(duì)應(yīng)坐標(biāo)相等,進(jìn)而通過方程思想來求解.題型二:數(shù)形結(jié)合思想一、單選題1.(2022·四川眉山·三模(理))下如圖是世界最高橋——貴州北盤江斜拉橋.下如圖是根據(jù)下如圖作的簡(jiǎn)易側(cè)視圖(為便于計(jì)算,側(cè)視圖與實(shí)物有區(qū)別).在側(cè)視圖中,斜拉桿PA,PB,PC,PD的一端P在垂直于水平面的塔柱上,另一端A,B,C,D與塔柱上的點(diǎn)O都在橋面同一側(cè)的水平直線上.已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.根據(jù)物理學(xué)知識(shí)得SKIPIF1<0,則SKIPIF1<0(

)A.28m B.20m C.31m D.22m【答案】D【分析】由SKIPIF1<0,得SKIPIF1<0,則可得SKIPIF1<0,可求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),則由已知可得SKIPIF1<0為SKIPIF1<0的中點(diǎn),再結(jié)合已知的數(shù)據(jù)可求得結(jié)果【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0∽SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的中點(diǎn),因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故選:D2.(2021·河南省杞縣高中高三階段練習(xí)(理))若點(diǎn)SKIPIF1<0是SKIPIF1<0所在平面內(nèi)一點(diǎn),且滿足SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】在平面內(nèi)取點(diǎn)D,使得SKIPIF1<0,進(jìn)而得到SKIPIF1<0及SKIPIF1<0間的關(guān)系,進(jìn)而求得各三角形面積的比例.【詳解】在平面內(nèi)取點(diǎn)D,使得SKIPIF1<0,則由SKIPIF1<0.如圖所示:設(shè)SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,再由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0.于是SKIPIF1<0.故選:A.二、多選題3.(2022·全國(guó)·高三專題練習(xí))眾所周知的“太極圖”,其形狀如對(duì)稱的陰陽(yáng)兩魚互抱在一起,也被稱為“陰陽(yáng)魚太極圖”.如圖是放在平面直角坐標(biāo)系中的“太極圖”.整個(gè)圖形是一個(gè)圓形SKIPIF1<0.其中黑色陰影區(qū)域在SKIPIF1<0軸右側(cè)部分的邊界為一個(gè)半圓,給出以下命題:其中所有正確結(jié)論的序號(hào)是(

)A.在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率是SKIPIF1<0;B.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與白色部分有公共點(diǎn);C.黑色陰影部分(包括黑白交界處)中一點(diǎn)SKIPIF1<0,則SKIPIF1<0的最大值為SKIPIF1<0;D.若點(diǎn)SKIPIF1<0,SKIPIF1<0為圓SKIPIF1<0過點(diǎn)SKIPIF1<0的直徑,線段SKIPIF1<0是圓SKIPIF1<0所有過點(diǎn)SKIPIF1<0的弦中最短的弦,則SKIPIF1<0的值為SKIPIF1<0.【答案】ACD【分析】根據(jù)幾何概型的概率公式可判斷A的正誤;計(jì)算直線與圓的位置關(guān)系以及數(shù)形結(jié)合可判斷B的正誤;利用點(diǎn)到直線的距離公式以及數(shù)形結(jié)合可判斷C的正誤;求出點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的坐標(biāo),利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可判斷D的正誤.【詳解】對(duì)于A,設(shè)黑色部分區(qū)域的面積為SKIPIF1<0,整個(gè)圓的面積為SKIPIF1<0,由對(duì)稱性可知,SKIPIF1<0,所以,在太極圖中隨機(jī)取一點(diǎn),此點(diǎn)取自黑色陰影部分的概率為SKIPIF1<0,故A正確;對(duì)于B,當(dāng)SKIPIF1<0時(shí),直線的方程為SKIPIF1<0,即SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,下方白色小圓的方程為SKIPIF1<0,圓心為SKIPIF1<0,半徑為SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,如下圖所示:由圖可知,直線SKIPIF1<0與與白色部分無公共點(diǎn),故B錯(cuò)誤;對(duì)于C,黑色陰影部分小圓的方程為SKIPIF1<0,設(shè)SKIPIF1<0,如下圖所示:當(dāng)直線SKIPIF1<0與圓SKIPIF1<0相切時(shí),SKIPIF1<0取得最大值,且圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,由圖可知,SKIPIF1<0,故SKIPIF1<0,故C正確;對(duì)于D,由于SKIPIF1<0是圓SKIPIF1<0中過點(diǎn)SKIPIF1<0的直徑,則SKIPIF1<0、SKIPIF1<0為圓SKIPIF1<0與SKIPIF1<0軸的兩個(gè)交點(diǎn),可設(shè)SKIPIF1<0、SKIPIF1<0,當(dāng)SKIPIF1<0軸時(shí),SKIPIF1<0取最小值,則直線SKIPIF1<0的方程為SKIPIF1<0,可設(shè)點(diǎn)SKIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:ACD4.(2021·河北·石家莊一中高三階段練習(xí))八卦是中國(guó)文化的基本哲學(xué)概念,如圖1是八卦模型圖,其平面圖形記為圖2中的正八邊形ABCDEFGH,其中SKIPIF1<0,則下列結(jié)論正確的有(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0【答案】ABD【分析】直接利用向量的數(shù)量積的應(yīng)用,向量的夾角的應(yīng)用結(jié)合圖像求出結(jié)果,逐一分析各個(gè)選項(xiàng)即可得出答案.【詳解】解:圖2中的正八邊形SKIPIF1<0,其中SKIPIF1<0,對(duì)于ASKIPIF1<0,故A正確;對(duì)于BSKIPIF1<0,故B正確;對(duì)于C:因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;對(duì)于D:因?yàn)镾KIPIF1<0,所以向量SKIPIF1<0在向量SKIPIF1<0上的投影向量即為SKIPIF1<0在SKIPIF1<0向量上的投影向量SKIPIF1<0,故D正確.故選:ABD.5.(2022·全國(guó)·高三專題練習(xí))已知四邊形SKIPIF1<0和四邊形SKIPIF1<0為正方形SKIPIF1<0,SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】如圖建立平面直角坐標(biāo)系,用坐標(biāo)表示出點(diǎn)和向量,求出兩個(gè)正方形的邊長(zhǎng),再利用向量的坐標(biāo)計(jì)算即可【詳解】如圖建立平面直角坐標(biāo)系,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,對(duì)于A,SKIPIF1<0,所以A正確,對(duì)于B,SKIPIF1<0,所以B錯(cuò)誤,對(duì)于C,SKIPIF1<0,所以C正確,對(duì)于D,SKIPIF1<0,所以D正確,故選:ACD6.(2022·山東·高三開學(xué)考試)在△SKIPIF1<0中,內(nèi)角SKIPIF1<0所對(duì)的邊分別為a、b、c,則下列說法正確的是(

)A.SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.SKIPIF1<0D.若SKIPIF1<0,且ABAB?ACAC=12,則△SKIPIF1<0為等邊三角形【答案】ACD【分析】A由正弦定理及等比的性質(zhì)可說明;B令SKIPIF1<0可得反例;C由和角正弦公式及三角形內(nèi)角和的性質(zhì)有SKIPIF1<0,由正弦定理即可證;D若SKIPIF1<0,SKIPIF1<0,根據(jù)單位向量的定義,向量加法的幾何意義及垂直表示、數(shù)量積的定義易知△SKIPIF1<0的形狀.【詳解】A:由SKIPIF1<0,根據(jù)等比的性質(zhì)有SKIPIF1<0,正確;B:當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,錯(cuò)誤;C:SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,由正弦定理易得SKIPIF1<0,正確;D:如下圖,SKIPIF1<0是單位向量,則SKIPIF1<0SKIPIF1<0,即SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0的夾角為SKIPIF1<0,易知△SKIPIF1<0為等邊三角形,正確.故選:ACD【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:D選項(xiàng),注意應(yīng)用向量在幾何圖形中所代表的線段,結(jié)合向量加法、數(shù)量積的幾何意義判斷夾角、線段間的位置關(guān)系,說明三角形的形狀.三、填空題7.(2022·浙江紹興·模擬預(yù)測(cè))已知單位向量SKIPIF1<0,向量SKIPIF1<0滿足方程SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】2【分析】首先需要將向量用坐標(biāo)表示,通過題中的已知條件,可以得出向量SKIPIF1<0的運(yùn)動(dòng)軌跡,根據(jù)已知條件SKIPIF1<0可以推斷出SKIPIF1<0三點(diǎn)共線,作出圖像,結(jié)合圖像進(jìn)行求解.【詳解】設(shè)SKIPIF1<0,因?yàn)橄蛄縎KIPIF1<0滿足方程SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,整理得SKIPIF1<0,同理可得,SKIPIF1<0.故SKIPIF1<0得運(yùn)動(dòng)軌跡為SKIPIF1<0,如圖所示:SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,故SKIPIF1<0三點(diǎn)共線,據(jù)圖可以看出,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的值最小為SKIPIF1<0.故答案為:2.8.(2022·浙江紹興·模擬預(yù)測(cè))已知平面向量SKIPIF1<0(互不相等),SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0__________.【答案】5【分析】構(gòu)圖,設(shè)SKIPIF1<0,根據(jù)題設(shè)條件SKIPIF1<0可以判定SKIPIF1<0三點(diǎn)共線,又SKIPIF1<0,所以SKIPIF1<0,則點(diǎn)SKIPIF1<0,SKIPIF1<0在以SKIPIF1<0為直徑的圓E上,運(yùn)用數(shù)量積的幾何意義即可求解【詳解】如圖,設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0共線,即SKIPIF1<0三點(diǎn)共線;且SKIPIF1<0,即SKIPIF1<0;又SKIPIF1<0,得SKIPIF1<0,即點(diǎn)SKIPIF1<0,SKIPIF1<0在以SKIPIF1<0為直徑的圓E上.所以SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,過E作SKIPIF1<0于H,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.9.(2022·浙江·慈溪中學(xué)模擬預(yù)測(cè))已知平面向量SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【分析】根據(jù)題意作出圖形,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,再根據(jù)題意得點(diǎn)SKIPIF1<0是直線SKIPIF1<0與SKIPIF1<0的角平分線的交點(diǎn),得到SKIPIF1<0,進(jìn)而得到SKIPIF1<0,求解計(jì)算即可.【詳解】如下圖所示,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,又由于SKIPIF1<0,因此SKIPIF1<0是SKIPIF1<0的角平分線,因此點(diǎn)SKIPIF1<0是直線SKIPIF1<0與SKIPIF1<0的角平分線的交點(diǎn).根據(jù)角平分線的性質(zhì)可SKIPIF1<0.過點(diǎn)SKIPIF1<0作SKIPIF1<0的平行線交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0.因此點(diǎn)SKIPIF1<0在以SKIPIF1<0為圓心,半徑為2的圓上運(yùn)動(dòng)由于SKIPIF1<0,由此當(dāng)直線SKIPIF1<0相切于SKIPIF1<0時(shí),SKIPIF1<0有最大值,SKIPIF1<0有最小值.設(shè)此時(shí)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.綜合上述,SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】與平面向量有關(guān)的最值問題,常見處理方法有兩種:第一種:利用坐標(biāo)進(jìn)行轉(zhuǎn)化;第二種:利用點(diǎn)的幾何意義轉(zhuǎn)化成軌跡問題求解.10.(2022·湖南·長(zhǎng)郡中學(xué)一模)在邊長(zhǎng)為3的正方形ABCD中,以點(diǎn)A為圓心作單位圓,分別交AB,AD于E,F(xiàn)兩點(diǎn),點(diǎn)P是SKIPIF1<0上一點(diǎn),則SKIPIF1<0的取值范圍為__________.【答案】SKIPIF1<0【分析】建立直角坐標(biāo)系,設(shè)出各個(gè)點(diǎn)以及點(diǎn)SKIPIF1<0的坐標(biāo),根據(jù)向量的坐標(biāo)表示,再利用三角函數(shù)求值域的方法得出SKIPIF1<0的取值范圍.【詳解】根據(jù)題意畫出圖形,并建立平面直角坐標(biāo)系,如圖:由題意可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0,故答案為:SKIPIF1<0.11.(2022·四川達(dá)州·二模(理))如圖,在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【分析】作SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,利用勾股定理可構(gòu)造方程求得SKIPIF1<0和SKIPIF1<0的長(zhǎng);以SKIPIF1<0為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,利用平面向量坐標(biāo)運(yùn)算可計(jì)算得到結(jié)果.【詳解】作SKIPIF1<0,SKIPIF1<0,垂足分別為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,由勾股定理得:SKIPIF1<0,解得:SKIPIF1<0;以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0正方向?yàn)镾KIPIF1<0軸,可建立如圖所示平面直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.12.(2022·陜西·西安中學(xué)高三階段練習(xí)(理))在SKIPIF1<0中,SKIPIF1<0,若O為SKIPIF1<0外接圓的圓心,則SKIPIF1<0的值為__________.【答案】10【分析】作出邊SKIPIF1<0垂線,利用向量的運(yùn)算將SKIPIF1<0用SKIPIF1<0表示,得有向量的數(shù)量積的幾何意義將向量的數(shù)量積表示成一個(gè)向量與另一個(gè)向量的投影的乘積即可求得答案【詳解】過SKIPIF1<0作SKIPIF1<0,垂足分別為SKIPIF1<0,因?yàn)镺為SKIPIF1<0外接圓的圓心,所以SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故答案為:1013.(2022·浙江浙江·高三階段練習(xí))已知平面向量SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍為_________.【答案】SKIPIF1<0【分析】建立平面直角坐標(biāo)系,可知C在以SKIPIF1<0為圓心,1為半徑的圓上,D在以SKIPIF1<0為圓心3為半徑的圓內(nèi)(含邊界),利用向量的模長(zhǎng)公式及三角不等式,數(shù)形結(jié)合可求解.【詳解】SKIPIF1<0,SKIPIF1<0如圖建立平面直角坐標(biāo)系,且SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,知C在以SKIPIF1<0為圓心,1為半徑的圓上,設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,知D在以SKIPIF1<0為圓心3為半徑的圓內(nèi)(含邊界)作出圖像,如圖所示:當(dāng)點(diǎn)SKIPIF1<0取SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0取SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0是相反向量,此時(shí)SKIPIF1<0;SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0與SKIPIF1<0同向時(shí)等號(hào)成立,又SKIPIF1<0,即SKIPIF1<0由圖像可知SKIPIF1<0與SKIPIF1<0可以同向,此時(shí)SKIPIF1<0∴SKIPIF1<0的取值范圍為SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】方法點(diǎn)睛:向量的運(yùn)算有兩種方法,一是幾何運(yùn)算往往結(jié)合平面幾何知識(shí)和三角函數(shù)知識(shí)解答,運(yùn)算法則是:平行四邊形法則和三角形法則;二是坐標(biāo)運(yùn)算:建立坐標(biāo)系轉(zhuǎn)化為解析幾何問題解答(求最值與范圍問題,往往利用坐標(biāo)運(yùn)算比較簡(jiǎn)單).題型三:分類與整合思想一、單選題1.(2022·全國(guó)·高三專題練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.1【答案】D【分析】根據(jù)題意可得SKIPIF1<0,分SKIPIF1<0和SKIPIF1<0兩種情況討論,結(jié)合基本不等式即可得出答案.【詳解】解:由向量SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),取等號(hào),綜上SKIPIF1<0的最大值為1.故選:D.2.(2020·全國(guó)·高三專題練習(xí)(文))正項(xiàng)等比數(shù)列SKIPIF1<0,SKIPIF1<0,“SKIPIF1<0”是“SKIPIF1<0”的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【分析】先判斷是否是充分條件,可令SKIPIF1<0,顯示條件成立,但結(jié)論不成立,故不充分;再證是否是必要條件,不妨假設(shè)SKIPIF1<0最大,則SKIPIF1<0最小,且SKIPIF1<0,設(shè)SKIPIF1<0公比為SKIPIF1<0再得到SKIPIF1<0SKIPIF1<0,對(duì)SKIPIF1<0分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0討論,可證得SKIPIF1<0,從而得到SKIPIF1<0,得到答案.【詳解】解:設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,不等式成立,但是SKIPIF1<0不成立;故“SKIPIF1<0”是“SKIPIF1<0”的不充分條件;當(dāng)SKIPIF1<0時(shí),顯然SKIPIF1<0互不相等,設(shè)SKIPIF1<0公比為SKIPIF1<0SKIPIF1<0等價(jià)于SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,不妨假設(shè)SKIPIF1<0最大,所以SKIPIF1<0最小,所以SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0

當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;綜上知,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,故“SKIPIF1<0”是“SKIPIF1<0”的必要條件.即“SKIPIF1<0”是“SKIPIF1<0”的必要不充分條件.故選:B.【點(diǎn)睛】本題考查了充分必要條件的判斷,等比數(shù)列的通項(xiàng)公式及性質(zhì),作差法比較厭,還考查了學(xué)生的分析推理能力,轉(zhuǎn)化與化歸思想,難度較大.3.(2022·全國(guó)·高三專題練習(xí))已知四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在四邊形SKIPIF1<0上運(yùn)動(dòng),則SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意分析可知四線性SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,且SKIPIF1<0,只需考慮點(diǎn)SKIPIF1<0在邊SKIPIF1<0上的運(yùn)動(dòng)情況即可,然后分類討論求出SKIPIF1<0的最小值.【詳解】如圖所示,因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0垂直且平分SKIPIF1<0,則△SKIPIF1<0為等腰三角形,又SKIPIF1<0,所以△SKIPIF1<0為等邊三角形.則四邊形SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,故點(diǎn)SKIPIF1<0在四邊形SKIPIF1<0上運(yùn)動(dòng)時(shí),只需考慮點(diǎn)SKIPIF1<0在邊SKIPIF1<0上的運(yùn)動(dòng)情況即可,因?yàn)镾KIPIF1<0,易知SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,①當(dāng)點(diǎn)SKIPIF1<0在邊SKIPIF1<0上運(yùn)動(dòng)時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0;②當(dāng)點(diǎn)SKIPIF1<0在邊SKIPIF1<0上運(yùn)動(dòng)時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0;綜上,SKIPIF1<0的最小值為SKIPIF1<0;故選:C.【點(diǎn)睛】本題考查向量的數(shù)量積及數(shù)量積的最值問題,考查數(shù)形結(jié)合思想的運(yùn)用、分類討論思想的運(yùn)用,難度稍大.4.(2022·全國(guó)·高三專題練習(xí))在直角梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn).設(shè)SKIPIF1<0,SKIPIF1<0,對(duì)于函數(shù)SKIPIF1<0,下列描述正確的是(

)A.SKIPIF1<0的最大值和SKIPIF1<0無關(guān) B.SKIPIF1<0的最小值和SKIPIF1<0無關(guān)C.SKIPIF1<0的值域和SKIPIF1<0無關(guān) D.SKIPIF1<0在其定義域上的單調(diào)性和SKIPIF1<0無關(guān)【答案】A【解析】建立合適的直角坐標(biāo),根據(jù)向量的坐標(biāo)表示和平面向量數(shù)量積的坐標(biāo)表示建立SKIPIF1<0的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì),分SKIPIF1<0和SKIPIF1<0兩種情況通過判斷單調(diào)性求SKIPIF1<0時(shí)函數(shù)SKIPIF1<0最值即可【詳解】建立直角坐標(biāo)系如圖所示:由題意知,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論