2023學(xué)年安徽省泗縣劉圩高級中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷(含解析)_第1頁
2023學(xué)年安徽省泗縣劉圩高級中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷(含解析)_第2頁
2023學(xué)年安徽省泗縣劉圩高級中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷(含解析)_第3頁
2023學(xué)年安徽省泗縣劉圩高級中學(xué)高考考前提分?jǐn)?shù)學(xué)仿真卷(含解析)_第4頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)m,n為直線,、為平面,則的一個充分條件可以是()A.,, B.,C., D.,2.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.3.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.4.連接雙曲線及的4個頂點的四邊形面積為,連接4個焦點的四邊形的面積為,則當(dāng)取得最大值時,雙曲線的離心率為()A. B. C. D.5.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.6.已知拋物線上一點的縱坐標(biāo)為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.57.記單調(diào)遞增的等比數(shù)列的前項和為,若,,則()A. B. C. D.8.是拋物線上一點,是圓關(guān)于直線的對稱圓上的一點,則最小值是()A. B. C. D.9.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.10.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關(guān)系為()A. B.C. D.11.已知雙曲線的右焦點為,若雙曲線的一條漸近線的傾斜角為,且點到該漸近線的距離為,則雙曲線的實軸的長為A. B.C. D.12.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),滿足約束條件,則的最小值為______.14.若,則__________.15.如圖,在平面四邊形中,點,是橢圓短軸的兩個端點,點在橢圓上,,記和的面積分別為,,則______.16.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程;(2)設(shè)和交點的交點為,求的面積.18.(12分)設(shè)函數(shù),.(Ⅰ)討論的單調(diào)性;(Ⅱ)時,若,,求證:.19.(12分)設(shè)函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.20.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.21.(12分)設(shè)函數(shù),是函數(shù)的導(dǎo)數(shù).(1)若,證明在區(qū)間上沒有零點;(2)在上恒成立,求的取值范圍.22.(10分)為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機(jī)構(gòu)從全國各城市中抽取了100個相同等級地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺”有關(guān).業(yè)績突出城市業(yè)績不突出城市總計外賣甲外賣乙總計(2)由頻率分布直方圖可以認(rèn)為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國各城市中隨機(jī)抽取6個城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個數(shù),求的數(shù)學(xué)期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動來提升業(yè)績,據(jù)統(tǒng)計,開展此活動后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個城市不開展?fàn)I銷活動,若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個城市中開展?fàn)I銷活動將比不開展?fàn)I銷活動每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】

根據(jù)線面垂直的判斷方法對選項逐一分析,由此確定正確選項.【題目詳解】對于A選項,當(dāng),,時,由于不在平面內(nèi),故無法得出.對于B選項,由于,,所以.故B選項正確.對于C選項,當(dāng),時,可能含于平面,故無法得出.對于D選項,當(dāng),時,無法得出.綜上所述,的一個充分條件是“,”故選:B【答案點睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.2、A【答案解析】

若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個結(jié)論可以求出雙曲線離心率的取值范圍.【題目詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【答案點睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,解題時要注意挖掘隱含條件.3、C【答案解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【題目詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【答案點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對這些知識的理解掌握水平.4、D【答案解析】

先求出四個頂點、四個焦點的坐標(biāo),四個頂點構(gòu)成一個菱形,求出菱形的面積,四個焦點構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時有,從而求得其離心率.【題目詳解】雙曲線與互為共軛雙曲線,四個頂點的坐標(biāo)為,四個焦點的坐標(biāo)為,四個頂點形成的四邊形的面積,四個焦點連線形成的四邊形的面積,所以,當(dāng)取得最大值時有,,離心率,故選:D.【答案點睛】該題考查的是有關(guān)雙曲線的離心率的問題,涉及到的知識點有共軛雙曲線的頂點,焦點,菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡單題目.5、A【答案解析】

直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【題目詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【答案點睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運算求解能力.6、D【答案解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標(biāo)為,準(zhǔn)線方程為,因為點A的縱坐標(biāo)為4,所以點A到拋物線準(zhǔn)線的距離為,因為拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應(yīng)用拋物線定義和拋物線上點的性質(zhì)拋物線上的點到焦點的距離,考查學(xué)生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時經(jīng)常用到,可以簡化運算.7、C【答案解析】

先利用等比數(shù)列的性質(zhì)得到的值,再根據(jù)的方程組可得的值,從而得到數(shù)列的公比,進(jìn)而得到數(shù)列的通項和前項和,根據(jù)后兩個公式可得正確的選項.【題目詳解】因為為等比數(shù)列,所以,故即,由可得或,因為為遞增數(shù)列,故符合.此時,所以或(舍,因為為遞增數(shù)列).故,.故選C.【答案點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3)為等比數(shù)列()且公比為.8、C【答案解析】

求出點關(guān)于直線的對稱點的坐標(biāo),進(jìn)而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【題目詳解】如下圖所示:設(shè)點關(guān)于直線的對稱點為點,則,整理得,解得,即點,所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點,則,當(dāng)時,取最小值,因此,.故選:C.【答案點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計算能力,屬于中等題.9、C【答案解析】程序在運行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項.點睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時,要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.10、C【答案解析】

可設(shè),根據(jù)在上為偶函數(shù)及便可得到:,可設(shè),,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運算得到、、的大小關(guān)系,從而得到的大小關(guān)系.【題目詳解】解:因為,即,又,設(shè),根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【答案點睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個函數(shù)單調(diào)性的方法和過程:設(shè),通過條件比較與,函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.11、B【答案解析】

雙曲線的漸近線方程為,由題可知.設(shè)點,則點到直線的距離為,解得,所以,解得,所以雙曲線的實軸的長為,故選B.12、A【答案解析】

將圓的方程化簡成標(biāo)準(zhǔn)方程,再根據(jù)垂徑定理求解即可.【題目詳解】圓的標(biāo)準(zhǔn)方程,圓心坐標(biāo)為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【答案點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

作出滿足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點的斜率,觀察圖形斜率最小在點B處,聯(lián)立,解得點B坐標(biāo),即可求得答案.【題目詳解】作出滿足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【答案點睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.14、【答案解析】

因為,由二倍角公式得到,故得到.故答案為.15、【答案解析】

依題意易得A、B、C、D四點共圓且圓心在x軸上,然后設(shè)出圓心,由圓的方程與橢圓方程聯(lián)立得到B的橫坐標(biāo),進(jìn)一步得到D橫坐標(biāo),再由計算比值即可.【題目詳解】因為,所以A、B、C、D四點共圓,直徑為,又A、C關(guān)于x軸對稱,所以圓心E在x軸上,設(shè)圓心E為,則圓的方程為,聯(lián)立橢圓方程消y得,解得,故B的橫坐標(biāo)為,又B、D中點是E,所以D的橫坐標(biāo)為,故.故答案為:.【答案點睛】本題考查橢圓中的四點共圓及三角形面積之比的問題,考查學(xué)生基本計算能力及轉(zhuǎn)化與化歸思想,本題關(guān)鍵是求出B、D橫坐標(biāo),是一道有區(qū)分度的壓軸填空題.16、【答案解析】

先根據(jù)三棱錐的幾何性質(zhì),求出外接球的半徑,結(jié)合向量的運算,將問題轉(zhuǎn)化為求球體表面一點到外心距離最大的問題,即可求得結(jié)果.【題目詳解】因為兩兩垂直且,故三棱錐的外接球就是對應(yīng)棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設(shè)線段的中點為,故可得,故當(dāng)取得最大值時,取得最大值.而當(dāng)在同一個大圓上,且,點與線段在球心的異側(cè)時,取得最大值,如圖所示:此時,故答案為:.【答案點睛】本題考查球體的幾何性質(zhì),幾何體的外接球問題,涉及向量的線性運算以及數(shù)量積運算,屬綜合性困難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【答案解析】

(1)先將曲線的參數(shù)方程化為普通方程,再將普通方程化為極坐標(biāo)方程即可.(2)將和的極坐標(biāo)方程聯(lián)立,求得兩個曲線交點的極坐標(biāo),即可由極坐標(biāo)的含義求得的面積.【題目詳解】(1)曲線的參數(shù)方程為(α為參數(shù)),消去參數(shù)的的直角坐標(biāo)方程為.所以的極坐標(biāo)方程為(2)解方程組,得到.所以,則或().當(dāng)()時,,當(dāng)()時,.所以和的交點極坐標(biāo)為:,.所以.故的面積為.【答案點睛】本題考查了參數(shù)方程與普通方程的轉(zhuǎn)化,直角坐標(biāo)方程與極坐標(biāo)的轉(zhuǎn)化,利用極坐標(biāo)求三角形面積,屬于中檔題.18、(1)證明見解析;(2)證明見解析.【答案解析】

(1)首先對函數(shù)求導(dǎo),再根據(jù)參數(shù)的取值,討論的正負(fù),即可求出關(guān)于的單調(diào)性即可;(2)首先通過構(gòu)造新函數(shù),討論新函數(shù)的單調(diào)性,根據(jù)新函數(shù)的單調(diào)性證明.【題目詳解】(1),令,則,令得,當(dāng)時,則在單調(diào)遞減,當(dāng)時,則在單調(diào)遞增,所以,當(dāng)時,,即,則在上單調(diào)遞增,當(dāng)時,,易知當(dāng)時,,當(dāng)時,,由零點存在性定理知,,不妨設(shè),使得,當(dāng)時,,即,當(dāng)時,,即,當(dāng)時,,即,所以在和上單調(diào)遞增,在單調(diào)遞減;(2)證明:構(gòu)造函數(shù),,,,整理得,,(當(dāng)時等號成立),所以在上單調(diào)遞增,則,所以在上單調(diào)遞增,,這里不妨設(shè),欲證,即證由(1)知時,在上單調(diào)遞增,則需證,由已知有,只需證,即證,由在上單調(diào)遞增,且時,有,故成立,從而得證.【答案點睛】本題主要考查了導(dǎo)數(shù)含參分類討論單調(diào)性,借助構(gòu)造函數(shù)和單調(diào)性證明不等式,屬于難題.19、(1)(2)的遞減區(qū)間為和【答案解析】

(1)化簡函數(shù),代入,計算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【題目詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【答案點睛】本題主要考查了三角函數(shù)的恒等變形,正弦函數(shù)的圖象與性質(zhì),屬于中檔題.20、(1);(2)見解析.【答案解析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因為,要證,只需證,即證,只需證即可得結(jié)果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實數(shù)的取值范圍為.(2)由(1)知,,所以.因為,所以要證,只需證,即證,即證.因為,所以只需證,因為,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設(shè):證明:x+y-2xy==令,∴原式====當(dāng)時,21、(1)證明見解析(2)【答案解析】

(1)先利用導(dǎo)數(shù)的四則運算法則和導(dǎo)數(shù)公式求出,再由函數(shù)的導(dǎo)數(shù)可知,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,,可知在區(qū)間上恒成立,即在區(qū)間上沒有零點;(2)由題意可將轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論研究其在上的單調(diào)性,由,即可求出的取值范圍.【題目詳解】(1)若,則,,設(shè),則,,,故函數(shù)是奇函數(shù).當(dāng)時,,,這時,又函數(shù)是奇函數(shù),所以當(dāng)時,.綜上,當(dāng)時,函數(shù)單調(diào)遞增;當(dāng)時,函數(shù)單調(diào)遞減.又,,故在區(qū)間上恒成立,所以在區(qū)間上沒有零點.(2),由,所以恒成立,若,則,設(shè),.故當(dāng)時,,又,所以當(dāng)時,,滿足題意;當(dāng)時,有,與條件矛盾,舍去;當(dāng)時,令,則,又,故在區(qū)間上有無窮多個零點,設(shè)最小的零點為,則當(dāng)時,,因此在上單調(diào)遞增.,所以.于是,當(dāng)時,,得,與條件矛盾.故的取值范圍是.【答案點睛】本題主要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論