版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.根據(jù)圓規(guī)作圖的痕跡,可用直尺成功找到三角形外心的是()A. B.C. D.2.如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是()A.△AFD≌△DCE B.AF=ADC.AB=AF D.BE=AD﹣DF3.如圖,小明想利用太陽光測量樓高,發(fā)現(xiàn)對面墻上有這棟樓的影子,小明邊移動邊觀察,發(fā)現(xiàn)站在點處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重合且高度恰好相同.此時測得墻上影子高(點在同一條直線上).已知小明身高是,則樓高為()A. B. C. D.4.若函數(shù)的圖象在其象限內y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<25.下列圖形中,既是軸對稱圖形又是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個6.的倒數(shù)是()A.1 B.2 C. D.7.若點在拋物線上,則的值()A.2021 B.2020 C.2019 D.20188.sin60°的值是()A. B. C. D.9.拋物線的對稱軸是直線()A.x=-2 B.x=-1 C.x=2 D.x=110.我們要遵守交通規(guī)則,文明出行,做到“紅燈停,綠燈行”,小剛每天從家到學校需經(jīng)過三個路口,且每個路口都安裝了紅綠燈,每個路口紅燈和綠燈亮的時間相同,那么小剛從家出發(fā)去學校,他遇到兩次紅燈的概率是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,⊙O的直徑AB過弦CD的中點E,若∠C=25°,則∠D=________.12.若,且,則=______.13.如果3a=4b(a、b都不等于零),那么a+bb=_____14.如圖,在△ABC中,∠A=90°,AB=AC=2,以AB為直徑的圓交BC于點D,求圖中陰影部分的面積為_____.15.已知正方形ABCD的對角線長為8cm,則正方形ABCD的面積為_____cm1.16.分式方程=1的解為_____.17.如圖,已知等邊△ABC的邊長為4,P是AB邊上的一個動點,連接CP,過點P作∠EPC=60°,交AC于點E,以PE為邊作等邊△EPD,頂點D在線段PC上,O是△EPD的外心,當點P從點A運動到點B的過程中,點O也隨之運動,則點O經(jīng)過的路徑長為_____.18.等腰三角形的底角為15°,腰長為20cm,則此三角形的面積為.三、解答題(共66分)19.(10分)如圖,和都是等腰直角三角形,,的頂點與的斜邊的中點重合,將繞點旋轉,旋轉過程中,線段與線段相交于點,射線與線段相交于點,與射線相交于點.(1)求證:;(2)求證:平分;(3)當,,求的長.20.(6分)為了加強學校的體育活動,某學校計劃購進甲、乙兩種籃球,根據(jù)市場調研發(fā)現(xiàn),如果購進甲籃球2個和乙籃球3個共需270元;購進甲籃球3個和乙籃球2個共需230元.(1)求甲、乙兩種籃球每個的售價分別是多少元?(2)為滿足開展體育活動的需求,學校計劃購進甲、乙兩種籃球共100個,由于購貨量大,和商場協(xié)商,商場決定甲籃球以九折出售,乙籃球以八折出售,學校要求甲種籃球的數(shù)量不少于乙種籃球數(shù)量的4倍,甲種籃球的數(shù)量不多于90個,請你求出學?;ㄗ钌馘X的進貨方案;(3)學校又拿出省下的290元購買跳繩和毽子兩種體育器材,跳繩10元一根,毽子5元一個,在把錢用盡的情況下,有多少種進貨方案?21.(6分)如圖,已知直線y=x+3與x軸、y軸分別交于點A、B,拋物線y=-x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D.(1)求拋物線的解析式和頂點坐標;(2)在第三象限內的拋物線上是否存在一點F,使A、E、C、F為頂點的四邊形面積為6?若存在,直接寫出點F的坐標;若不存在,說明理由.22.(8分)如圖,在平面直角坐標系中,一次函數(shù)的圖象經(jīng)過點,與反比例函數(shù)的圖象交于.(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)設是直線上一點,過作軸,交反比例函數(shù)的圖象于點,若為頂點的四邊形為平行四邊形,求點的坐標.23.(8分)某水果公司以2元/千克的成本購進10000千克柑橘,銷售人員在銷售過程中隨機抽取柑橘進行“柑橘損壞率”統(tǒng)計,并繪制成如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解決下面問題:(1)柑橘損壞的概率估計值為;估計這批柑橘完好的質量為千克.(2)若希望這批柑橘能夠獲得利潤5000元,那么在出售柑橘(只賣好果)時,每千克大約定價為多少元比較合適?(精確到0.1)24.(8分)在平面直角坐標系中,已知拋物線y1=x2﹣4x+4的頂點為A,直線y2=kx﹣2k(k≠0),(1)試說明直線是否經(jīng)過拋物線頂點A;(2)若直線y2交拋物線于點B,且△OAB面積為1時,求B點坐標;(1)過x軸上的一點M(t,0)(0≤t≤2),作x軸的垂線,分別交y1,y2的圖象于點P,Q,判斷下列說法是否正確,并說明理由:①當k>0時,存在實數(shù)t(0≤t≤2)使得PQ=1.②當﹣2<k<﹣0.5時,不存在滿足條件的t(0≤t≤2)使得PQ=1.25.(10分)端午節(jié)是我國的傳統(tǒng)節(jié)日,人們素有吃粽子的習俗.某商場在端午節(jié)來臨之際用4800元購進A、B兩種粽子共1100個,購買A種粽子與購買B種粽子的費用相同.已知A種粽子的單價是B種粽子單價的1.2倍.(1)求A,B兩種粽子的單價;(2)若計劃用不超過8000元的資金再次購進A,B兩種粽子共1800個,已知A、B兩種粽子的進價不變.求A種粽子最多能購進多少個?26.(10分)將圖中的A型、B型、C型矩形紙片分別放在3個盒子中,盒子的形狀、大小、質地都相同,再將這3個盒子裝入一只不透明的袋子中.(1)攪勻后從中摸出1個盒子,求摸出的盒子中是型矩形紙片的概率;(2)攪勻后先從中摸出1個盒子(不放回),再從余下的兩個盒子中摸出一個盒子,求2次摸出的盒子的紙片能拼成一個新矩形的概率(不重疊無縫隙拼接).
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)三角形外心的定義得到三角形外心為三邊的垂直平分線的交點,然后利用基本作圖對各選項進行判斷.【詳解】三角形外心為三邊的垂直平分線的交點,由基本作圖得到C選項作了兩邊的垂直平分線,從而可用直尺成功找到三角形外心.故選C.【點睛】本題考查了作圖﹣基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了三角形的外心.2、B【解析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正確;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B錯誤;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正確;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正確;故選B.3、B【分析】過點C作CN⊥AB,可得四邊形CDME、ACDN是矩形,即可證明,從而得出AN,進而求得AB的長.【詳解】過點C作CN⊥AB,垂足為N,交EF于M點,
∴四邊形CDEM、BDCN是矩形,
∴,
∴,依題意知,EF∥AB,
∴,
∴,即:,
∴AN=20,
(米),
答:樓高為21.2米.
故選:B.【點睛】本題主要考查了相似三角形的應用,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解即可,體現(xiàn)了轉化的思想.4、B【分析】根據(jù)反比例函數(shù)的性質,可得m+1<0,從而得出m的取值范圍.【詳解】∵函數(shù)的圖象在其象限內y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.5、B【分析】根據(jù)中心對稱圖形和軸對稱圖形的概念即可得出答案.【詳解】根據(jù)中心對稱圖形和軸對稱圖形的概念,可以判定既是中心對稱圖形又是軸對稱圖形的有第3第4個共2個.故選B.考點:1.中心對稱圖形;2.軸對稱圖形.6、B【分析】根據(jù)特殊角的三角函數(shù)值即可求解.【詳解】=故的倒數(shù)是2,故選B.【點睛】此題主要考查倒數(shù),解題的關鍵是熟知特殊角的三角函數(shù)值.7、B【分析】將P點代入拋物線解析式得到等式,對等式進行適當變形即可.【詳解】解:將代入中得所以.故選:B.【點睛】本題考查二次函數(shù)上點的坐標特征,等式的性質.能根據(jù)等式的性質進行適當變形是解決此題的關鍵.8、C【分析】根據(jù)特殊角的三角函數(shù)值解答即可.【詳解】sin60°=,故選C.【點睛】本題考查特殊角的三角函數(shù)值,熟記幾個特殊角的三角函數(shù)值是解題關鍵.9、B【解析】令解得x=-1,故選B.10、B【分析】畫樹狀圖得出所有情況數(shù)和遇到兩次紅燈的情況數(shù),根據(jù)概率公式即可得答案.【詳解】根據(jù)題意畫樹狀圖如下:共有8種等情況數(shù),其中遇到兩次紅燈的有3種,則遇到兩次紅燈的概率是,故選:B.【點睛】本題考查利用列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比;根據(jù)樹狀圖得到遇兩次紅燈的情況數(shù)是解題關鍵.二、填空題(每小題3分,共24分)11、65°【解析】試題分析:先根據(jù)圓周角定理求出∠A的度數(shù),再由垂徑定理求出∠AED的度數(shù),進而可得出結論.∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直徑AB過弦CD的中點E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°考點:圓周角定理12、12【分析】設,則a=2k,b=3k,c=4k,由求出k值,即可求出c的值.【詳解】解:設,則a=2k,b=3k,c=4k,∵a+b-c=3,∴2k+3k-4k=3,∴k=3,∴c=4k=12.故答案為12.【點睛】此題主要考查了比例的性質,利用等比性質是解題關鍵.13、7【解析】直接利用已知把a,b用同一未知數(shù)表示,進而計算得出答案.【詳解】∵3a=4b(a、b都不等于零),∴設a=4x,則b=3x,那么a+ba故答案為:73【點睛】此題主要考查了比例的性質,正確表示出a,b的值是解題關鍵.14、1【分析】連接AD,由圖中的圖形關系看出陰影部分的面積可以簡化成一個三角形的面積,然后通過已知條件求出面積.【詳解】解:連接AD,
∵AB=BC=2,∠A=90°,∴∠C=∠B=45°,∴∠BAD=45°,∴BD=AD,∴BD=AD=,∴由BD,AD組成的兩個弓形面積相等,∴陰影部分的面積就等于△ABD的面積,∴S△ABD=AD?BD=××=1.故答案為:1.【點睛】本題考查的是扇形面積的計算,根據(jù)題意作出輔助線,構造出等腰直角三角形是解答此題的關鍵.15、31【分析】根據(jù)正方形的對角線相等且互相垂直,正方形是特殊的菱形,菱形的面積等于對角線乘積的一半進行求解即可.【詳解】解:∵四邊形ABCD為正方形,∴AC=BD=8cm,AC⊥BD,∴正方形ABCD的面積=×AC×BD=31cm1,故答案為:31.【點睛】本題考查了求解菱形的面積,屬于簡單題,熟悉求解菱形面積的特殊方法是解題關鍵.16、x=2【分析】分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到分式方程的解.【詳解】解:去分母得:2+x﹣1=x2﹣1,即x2﹣x﹣2=0,分解因式得:(x﹣2)(x+1)=0,解得:x=2或x=﹣1,經(jīng)檢驗x=﹣1是增根,分式方程的解為x=2,故答案為:x=2【點睛】此題考查了解分式方程,利用了轉化的思想,解分式方程時注意要檢驗.17、【分析】根據(jù)等邊三角形的外心性質,根據(jù)特殊角的三角函數(shù)即可求解.【詳解】解:如圖,作BG⊥AC、CF⊥AB于點G、F,交于點I,則點I是等邊三角形ABC的外心,∵等邊三角形ABC的邊長為4,∴AF=BF=2∠IAF=30°∴AI=∵點P是AB邊上的一個動點,O是等邊三角形△EPD的外心,∴當點P從點A運動到點B的過程中,點O也隨之運動,點O的經(jīng)過的路徑長是AI的長,∴點O的經(jīng)過的路徑長是.故答案為:.【點睛】本題考查等邊三角形的外心性質,關鍵在于熟悉性質,結合圖形計算.18、100【解析】試題分析:先作出圖象,根據(jù)含30°角的直角三角形的性質求出腰上的高,再根據(jù)三角形的面積公式即可求解.如圖,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面積考點:本題考查的是三角形外角的性質,含30°角的直角三角形的性質點評:解答本題的關鍵是熟練掌握三角形的一個外角等于與它不相鄰的兩個內角的和;30°角的所對的直角邊等于斜邊的一半.三、解答題(共66分)19、(1)詳見解析;(2)詳見解析;(3)5.【分析】(1)由△ABC和△DEF是兩個等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性質,即可得∠BEP=∠EQC,則可證得△BPE∽△CEQ;(2)只要證明△BPE∽△EPQ,可得∠BEP=∠EQP,且∠BEP=∠CQE,可得結論;(3)由相似三角形的性質可求BE=3=EC,可求AP=4,AQ=3,即可求PQ的長.【詳解】解:(1)和是兩個等腰直角三角形,,,即,,,,(2),,,,,,,且,,平分(3),且,,,,,,,,.【點睛】本題考查相似形綜合題、等腰直角三角形的性質,相似三角形的判定和性質,勾股定理等知識,解題的關鍵是正確尋找相似三角形解決問題,屬于中考壓軸題.20、(1)甲種籃球每個的售價為30元,乙種籃球每個的售價為70元;(2)花最少錢的進貨方案為購進甲種籃球90個,乙種籃球10個;(3)有28種進貨方案.【分析】(1)根據(jù)題意可以列出相應的方程組,從而可以解答本題;(2)設學校計劃購進甲種籃球m個,則學校計劃購進乙種籃球(100?m)個;根據(jù)題意列不等式即可得到結論;(3)設購買跳繩a根,毽子b個,根據(jù)題意得方程10a+5b=290,求得b=58?2a>0,解不等式即可得到結論..【詳解】(1)設甲種籃球每個的售價為元,乙種籃球每個的售價為元.依題意,得解得答:甲種籃球每個的售價為30元,乙種籃球每個的售價為70元.(2)設學校購進甲種籃球個,則購進乙種籃球個.由已知,得.解得.又,∴.設購進甲、乙兩種籃球學?;ǖ腻X為元,則,∴當時,取最小值,花最少錢為2990元.花最少錢的進貨方案為購進甲種籃球90個,乙種籃球10個.(3)設購買跳繩根,毽子個,則,.解得.∵為正整數(shù),∴有28種進貨方案.【點睛】本題考查了二元一次方程組的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用不等式的性質解答問題.21、(1)拋物線的解析式為y=-x2-2x+3,頂點坐標(-1,4);(2)存在點F(-1-,-1)【分析】(1)要求拋物線y=-x2+bx+c的解析式,由于b與c待定,為此要找拋物線上兩點坐標,拋物線y=-x2+bx+c經(jīng)過A、B兩點,且直線y=x+3與x軸、y軸分別交于點A、B,讓x=0,求y值,讓y=0,求x的值A、B兩點坐標代入解析式,利用配方變頂點式即可,(2)使A、E、C、F為頂點的四邊形面積為1,AC把四邊形分為兩個三角形,△ACE,△ACF,由拋物線y=-x2-2x+3與x軸交點A、C兩點,y=0,可求A、C兩點坐標,則AC長可求,點E在直線y=x+3上,由在對稱軸上,可求,設第三象限拋物線上的點縱坐標為-m,S四邊形AECF=,可求F點的縱坐標-m,把y=-m代入拋物線解析式,求出x即可.【詳解】(1)已知直線y=x+3與x軸、y軸分別交于點A、B,∴當x=0時,y=3,B(0,3),∴當y=0時,x+3=0,x=-3,A(-3,0),拋物線y=-x2+bx+c經(jīng)過A、B兩點,A、B兩點坐標代入解析式,解得,拋物線y=-x2-2x+3,拋物線y=-x2-2x+3=-(x+1)2+4,拋物線頂點坐標(-1,4),(2)使A、E、C、F為頂點的四邊形面積為1,拋物線y=-x2-2x+3與x軸交點A、C兩點,y=0,-x2-2x+3=0,解得x=1或x=-3,A(-3,0),C(1,0),點E在直線y=x+3上,當x=-1時,y=-1+3=2,設第三象限拋物線上的點縱坐標為-m,S四邊形AECF=S四邊形AECF=,AC=4,2+m=3,m=1,當y=-1時,-1=-x2-2x+3,x=-1±,由x<0,x=-1-,點F(-1-,-1),故存在第三象限內的拋物線上點F(-1-,-1),使A、E、C、F為頂點的四邊形面積為1.【點睛】本題考查拋物線解析式,頂點以及四邊形面積問題,確定拋物線上兩點確保,會利用一次函數(shù)求兩軸交點坐標,會利用配方法把拋物線解析式變?yōu)轫旤c式,會利用AC把四邊形分成兩個三角形求面積來解決問題.22、(1).;(2)的坐標為或.【解析】分析:(1)根據(jù)一次函數(shù)y=x+b的圖象經(jīng)過點A(-2,1),可以求得b的值,從而可以解答本題;(2)根據(jù)平行四邊形的性質和題意,可以求得點M的坐標,注意點M的橫坐標大于1.詳解:(1)一次函數(shù)的圖象經(jīng)過點,,,.一次函數(shù)與反比例函數(shù)交于.,,,.(2)設,.當且時,以A,O,M,N為頂點的四邊形為平行四邊形.即:且,解得:或(負值已舍),的坐標為或.點睛:本題考查反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.23、(1)0.1,1;(2)4.78元.【分析】(1)根據(jù)圖形即可得出柑橘損壞的概率,再求出柑橘完好的概率,用柑橘完好的概率乘以這批柑橘的總質量可得出這批柑橘完好的質量;(2)先設出每千克柑橘大約定價為x元比較合適,根據(jù)題意列出方程即可求出答案.【詳解】(1)根據(jù)所給的圖可得:柑橘損壞的概率估計值為:0.1,柑橘完好的概率估計值為1-0.1=0.9;這批柑橘完好的質量為:10000×0.9=1(千克),故答案為:0.1,1.(2)設每千克柑橘大約定價為x元比較合適,根據(jù)題意得:(x-2)×1=25000,解得:x≈4.78答:每千克柑橘大約定價為4.78元比較合適.【點睛】此題考查了利用頻率估計概率,解題的關鍵是在圖中得到必要的信息,求出柑橘損壞的概率;用到的知識點為:頻率=所求情況數(shù)與總情況數(shù)之比.24、(1)直線經(jīng)過A點;(2)B(1,1)或B(1,1);(1)①正確,②正確.【解析】(1)將拋物線解析式整理成頂點式形式,然后寫出頂點A的坐標,將點A的坐標代入直線的解析式判斷即可;(2)OA=2,△OAB面積為1時,根據(jù)三角形的面積公式,求出點B的縱坐標,代入拋物線的解析式即可求出點B的橫坐標,即可求解.
(1)①點M(t,0),則點P(t,t2﹣4t+4),點Q(t,kt﹣2k),若k>0:當0≤t≤2時,P在Q點上方時,t2-4t+4-kt-2k=3,整理得t2﹣(4+k)t+(1+2k)=0,求出△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,②分當P在Q點下方,當P在Q點上方時,兩種情況進行分類討論.【詳解】(1)y1頂點A(2,0)當x=2時,由2k-2k=0,∴直線經(jīng)過A點.(2)OA=2,△OAB面積為1時,S△OAByB令y解得:x1即點B的坐標為:B(1,1)或B(1,1),(1)∵點M(t,0),∴點P(t,t2﹣4t+4),點Q(t,kt﹣2k),①若k>0:當0≤t≤2時,P在Q點上方時,∵PQ=1∴t2﹣(4+k)t+(4+2k)=1整理得t2﹣(4+k)t+(1+2k)=0∵△=b2﹣4ac=(4+k)2﹣4(1+2k)=k2+12>0,此方程有解∴①正確.②若k<0:1)當P在Q點下方,∴t2﹣(4+k)t+(4+2k)=﹣1∴t2﹣(4+k)t+7+2k=0∵△=b2﹣4ac=(4+k)2﹣4(7+2k)=k2﹣12∴當存在PQ=1時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版協(xié)議起訴離婚案件財產(chǎn)評估與分配服務協(xié)議3篇
- 2025年鋼材行業(yè)供應鏈金融合作協(xié)議范本2篇
- 2025年度個人藝術品購買連帶擔保協(xié)議4篇
- 2025年度個人藝術品交易傭金協(xié)議書樣本4篇
- 2025年度個人教育培訓課程開發(fā)與授權協(xié)議書3篇
- 2025-2030全球ASME 規(guī)范高壓釜行業(yè)調研及趨勢分析報告
- 2025-2030全球雙向拉伸PET薄膜行業(yè)調研及趨勢分析報告
- 2025年全球及中國步進式爐床行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球半導體濕法工藝泵行業(yè)調研及趨勢分析報告
- 2025-2030全球地下雨水儲存系統(tǒng)行業(yè)調研及趨勢分析報告
- 2024-2025學年山東省濰坊市高一上冊1月期末考試數(shù)學檢測試題(附解析)
- 江蘇省揚州市蔣王小學2023~2024年五年級上學期英語期末試卷(含答案無聽力原文無音頻)
- 數(shù)學-湖南省新高考教學教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學年2025屆高三上學期第一次預熱演練試題和答案
- 決勝中層:中層管理者的九項修煉-記錄
- 幼兒園人民幣啟蒙教育方案
- 臨床藥師進修匯報課件
- 軍事理論(2024年版)學習通超星期末考試答案章節(jié)答案2024年
- 《無人機法律法規(guī)知識》課件-第1章 民用航空法概述
- 政治丨廣東省2025屆高中畢業(yè)班8月第一次調研考試廣東一調政治試卷及答案
- 2020-2024年安徽省初中學業(yè)水平考試中考物理試卷(5年真題+答案解析)
- 鑄石防磨施工工藝
評論
0/150
提交評論