2023學(xué)年北京市順義區(qū)、通州區(qū)高考數(shù)學(xué)四模試卷(含解析)_第1頁
2023學(xué)年北京市順義區(qū)、通州區(qū)高考數(shù)學(xué)四模試卷(含解析)_第2頁
2023學(xué)年北京市順義區(qū)、通州區(qū)高考數(shù)學(xué)四模試卷(含解析)_第3頁
2023學(xué)年北京市順義區(qū)、通州區(qū)高考數(shù)學(xué)四模試卷(含解析)_第4頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023學(xué)年高考數(shù)學(xué)模擬測試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,其中是虛數(shù)單位,則對應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.2.若復(fù)數(shù)(為虛數(shù)單位)的實(shí)部與虛部相等,則的值為()A. B. C. D.3.設(shè),,分別是中,,所對邊的邊長,則直線與的位置關(guān)系是()A.平行 B.重合C.垂直 D.相交但不垂直4.已知復(fù)數(shù)是正實(shí)數(shù),則實(shí)數(shù)的值為()A. B. C. D.5.如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江?。瓸.與去年同期相比,2017年第一季度的GDP總量實(shí)現(xiàn)了增長.C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個D.去年同期河南省的GDP總量不超過4000億元.6.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.7.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.328.已知函數(shù),若,則a的取值范圍為()A. B. C. D.9.三棱錐中,側(cè)棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.10.()A. B. C. D.11.已知函數(shù),則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.12.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動直徑,點(diǎn)為正方形邊界上任一點(diǎn),則的取值范圍是______.14.已知橢圓的下頂點(diǎn)為,若直線與橢圓交于不同的兩點(diǎn)、,則當(dāng)_____時,外心的橫坐標(biāo)最大.15.已知,,則與的夾角為.16.某市高三理科學(xué)生有名,在一次調(diào)研測試中,數(shù)學(xué)成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取份試卷進(jìn)行分析,則應(yīng)從分以上的試卷中抽取的份數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點(diǎn),求的取值范圍,并證明:.18.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點(diǎn)為,當(dāng)變化時,點(diǎn)構(gòu)成曲線,證明:過原點(diǎn)的任意直線與曲線有且僅有一個公共點(diǎn).19.(12分)設(shè)為實(shí)數(shù),已知函數(shù),.(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實(shí)數(shù),若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個相異的零點(diǎn),求的取值范圍.20.(12分)已知點(diǎn)為圓:上的動點(diǎn),為坐標(biāo)原點(diǎn),過作直線的垂線(當(dāng)、重合時,直線約定為軸),垂足為,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.(1)求點(diǎn)的軌跡的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程為,連接并延長交于,求的最大值.21.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點(diǎn),使面,說明理由;(2)求二面角的余弦值.22.(10分)已知橢圓的短軸長為,離心率,其右焦點(diǎn)為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.

2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【答案解析】

利用復(fù)數(shù)相等的條件求得,,則答案可求.【題目詳解】由,得,.對應(yīng)的點(diǎn)的坐標(biāo)為,,.故選:.【答案點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.2、C【答案解析】

利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【題目詳解】,又的實(shí)部與虛部相等,,解得.故選:C【答案點(diǎn)睛】本題主要考查復(fù)數(shù)的除法運(yùn)算,復(fù)數(shù)的概念運(yùn)用.3、C【答案解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點(diǎn):直線與直線的位置關(guān)系4、C【答案解析】

將復(fù)數(shù)化成標(biāo)準(zhǔn)形式,由題意可得實(shí)部大于零,虛部等于零,即可得到答案.【題目詳解】因?yàn)闉檎龑?shí)數(shù),所以且,解得.故選:C【答案點(diǎn)睛】本題考查復(fù)數(shù)的基本定義,屬基礎(chǔ)題.5、C【答案解析】

利用圖表中的數(shù)據(jù)進(jìn)行分析即可求解.【題目詳解】對于A選項(xiàng):2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,故A正確;對于B選項(xiàng):與去年同期相比,2017年第一季度5省的GDP均有不同的增長,所以其總量也實(shí)現(xiàn)了增長,故B正確;對于C選項(xiàng):2017年第一季度GDP總量由高到低排位分別是:江蘇、山東、浙江、河南、遼寧,2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,均居同一位的省有2個,故C錯誤;對于D選項(xiàng):去年同期河南省的GDP總量,故D正確.故選:C.【答案點(diǎn)睛】本題考查了圖表分析,學(xué)生的分析能力,推理能力,屬于基礎(chǔ)題.6、A【答案解析】

由題意可知直線過定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡并求解出離心率的取值范圍.【題目詳解】設(shè),且線過定點(diǎn)即為的圓心,因?yàn)?,所以,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【答案點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡化運(yùn)算.7、A【答案解析】

計(jì)算,再計(jì)算真子集個數(shù)得到答案.【題目詳解】,故真子集個數(shù)為:.故選:.【答案點(diǎn)睛】本題考查了集合的真子集個數(shù),意在考查學(xué)生的計(jì)算能力.8、C【答案解析】

求出函數(shù)定義域,在定義域內(nèi)確定函數(shù)的單調(diào)性,利用單調(diào)性解不等式.【題目詳解】由得,在時,是增函數(shù),是增函數(shù),是增函數(shù),∴是增函數(shù),∴由得,解得.故選:C.【答案點(diǎn)睛】本題考查函數(shù)的單調(diào)性,考查解函數(shù)不等式,解題關(guān)鍵是確定函數(shù)的單調(diào)性,解題時可先確定函數(shù)定義域,在定義域內(nèi)求解.9、B【答案解析】由題,側(cè)棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點(diǎn)睛:本題考查的知識點(diǎn)是球內(nèi)接多面體,熟練掌握球的半徑公式是解答的關(guān)鍵.10、D【答案解析】

利用,根據(jù)誘導(dǎo)公式進(jìn)行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【題目詳解】由所以,所以原式所以原式故故選:D【答案點(diǎn)睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.11、A【答案解析】

首先求得時,的取值范圍.然后求得時,的單調(diào)性和零點(diǎn),令,根據(jù)“時,的取值范圍”得到,利用零點(diǎn)存在性定理,求得函數(shù)的零點(diǎn)所在區(qū)間.【題目詳解】當(dāng)時,.當(dāng)時,為增函數(shù),且,則是唯一零點(diǎn).由于“當(dāng)時,.”,所以令,得,因?yàn)?,,所以函?shù)的零點(diǎn)所在區(qū)間為.故選:A【答案點(diǎn)睛】本小題主要考查分段函數(shù)的性質(zhì),考查符合函數(shù)零點(diǎn),考查零點(diǎn)存在性定理,考查函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.12、C【答案解析】

先得出兩直線平行的充要條件,根據(jù)小范圍可推導(dǎo)出大范圍,可得到答案.【題目詳解】直線,,的充要條件是,當(dāng)a=2時,化簡后發(fā)現(xiàn)兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【答案點(diǎn)睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

根據(jù)向量關(guān)系表示,只需求出的取值范圍即可得解.【題目詳解】由題可得:,故答案為:【答案點(diǎn)睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運(yùn)算,關(guān)鍵在于恰當(dāng)?shù)貙ο蛄窟M(jìn)行轉(zhuǎn)換,便于計(jì)算解題.14、【答案解析】

由已知可得、的坐標(biāo),求得的垂直平分線方程,聯(lián)立已知直線方程與橢圓方程,求得的垂直平分線方程,兩垂直平分線方程聯(lián)立求得外心的橫坐標(biāo),再由導(dǎo)數(shù)求最值.【題目詳解】如圖,由已知條件可知,不妨設(shè),則外心在的垂直平分線上,即在直線,也就是在直線上,聯(lián)立,得或,的中點(diǎn)坐標(biāo)為,則的垂直平分線方程為,把代入上式,得,令,則,由,得(舍)或.當(dāng)時,,當(dāng)時,.當(dāng)時,函數(shù)取極大值,亦為最大值.故答案為:.【答案點(diǎn)睛】本題考查直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了利用導(dǎo)數(shù)求最值,是中等題.15、【答案解析】

根據(jù)已知條件,去括號得:,16、【答案解析】

由題意結(jié)合正態(tài)分布曲線可得分以上的概率,乘以可得.【題目詳解】解:,所以應(yīng)從分以上的試卷中抽取份.故答案為:.【答案點(diǎn)睛】本題考查正態(tài)分布曲線,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【答案解析】

(1)當(dāng)時,求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個極值點(diǎn),求得的取值范圍.將代入列方程組,由證得.【題目詳解】(1),,又,所以在單增,從而當(dāng)時,遞減,當(dāng)時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時,所以當(dāng)時,有一個極值點(diǎn),當(dāng)時,有兩個極值點(diǎn),當(dāng)時,沒有極值點(diǎn),綜上因?yàn)槭堑膬蓚€極值點(diǎn),所以不妨設(shè),得,因?yàn)樵谶f減,且,所以又所以【答案點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18、(1);(2)證明見解析【答案解析】

(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點(diǎn),即可證明結(jié)論成立.【題目詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時,;時,,即時,;時,,時,單調(diào)遞減;時,單調(diào)遞增,時,取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點(diǎn),則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當(dāng)時,恒成立,在上單調(diào)遞增.,,,存在滿足時,使得.又單調(diào)遞增,所以為唯一解.②當(dāng)時,二次函數(shù),滿足,則恒成立,在上單調(diào)遞增.,,存在使得,又在上單調(diào)遞增,為唯一解.③當(dāng)時,二次函數(shù),滿足,此時有兩個不同的解,不妨設(shè),,,列表如下:00↗極大值↘極小值↗由表可知,當(dāng)時,的極大值為.,,,,,..下面來證明,構(gòu)造函數(shù),則,當(dāng)時,,此時單調(diào)遞增,,時,,,故成立.,存在,使得.又在單調(diào)遞增,為唯一解.所以,對任意,方程有唯一解,即過原點(diǎn)任意的直線與曲線有且僅有一個公共點(diǎn).【答案點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,考查不等式恒成立問題,考查利用單調(diào)性研究圖象交點(diǎn)問題,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于難題.19、(1)函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)(3)【答案解析】

(1)據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性的關(guān)系即可求出;(2)分離參數(shù),可得對任意的及任意的恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值即可求出的范圍;(3)先求導(dǎo),再分類討論,根據(jù)導(dǎo)數(shù)和函數(shù)單調(diào)性以及最值得關(guān)系即可求出的范圍【題目詳解】解:(1)當(dāng)時,因?yàn)?當(dāng)時,;當(dāng)時,.所以函數(shù)單調(diào)減區(qū)間為;單調(diào)增區(qū)間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設(shè),,則,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數(shù)在上單調(diào)遞增,所以函數(shù)至多有一個零點(diǎn),不合題意;②若時,令,得.由第(2)小題,知:當(dāng)時,,所以,所以,所以當(dāng)時,函數(shù)的值域?yàn)椋?存在,使得,即,①且當(dāng)時,,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.因?yàn)楹瘮?shù)有兩個零點(diǎn),,所以.②設(shè),,則,所以函數(shù)在單調(diào)遞增,由于,所以當(dāng)時,.所以,②式中的,又由①式,得.由第(1)小題可知,當(dāng)時,函數(shù)在上單調(diào)遞減,所以,即.當(dāng)時,(?。┯捎?所以得,又因?yàn)?且函數(shù)在上單調(diào)遞減,函數(shù)的圖象在上不間斷,所以函數(shù)在上恰有一個零點(diǎn);(ⅱ)由于,令,設(shè),,由于時,,,所以設(shè),即.由①式,得,當(dāng)時,,且,同理可得函數(shù)在上也恰有一個零點(diǎn).綜上,.【答案點(diǎn)睛】本題考查含參數(shù)的導(dǎo)數(shù)的單調(diào)性,利用導(dǎo)數(shù)求不等式恒成立問題,以及考查函數(shù)零點(diǎn)問題,考查學(xué)生的計(jì)算能力,是綜合性較強(qiáng)的題.20、(1);(2)【答案解析】

(1)設(shè)的極坐標(biāo)為,在中,有,即可得結(jié)果;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,聯(lián)立兩個方程,可求出,聯(lián)立可得,則計(jì)算可得,利用三角函數(shù)的性質(zhì)可得最值.【題目詳解】(1)設(shè)的極坐標(biāo)為,在中,有,點(diǎn)的軌跡的極坐標(biāo)方程為;(2)設(shè)射線:,,圓的極坐標(biāo)方程為,由得:,由得:,,,當(dāng),即時,,的最大值為.【答案點(diǎn)睛】本題考查極坐標(biāo)方程的應(yīng)用,考查三角函數(shù)性質(zhì)的應(yīng)用,是中檔題.21、(1)存在;詳見解析(2)【答案解析】

(1)利用面面平行的性質(zhì)定理可得,為上靠近點(diǎn)的三等分點(diǎn),中點(diǎn),證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長,寫出各點(diǎn)坐標(biāo),用向量法求二面角.【題目詳解】解:(1)當(dāng)為上靠近點(diǎn)的三等分點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論