




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)函數(shù),則,的大致圖象大致是的()A. B.C. D.2.已知雙曲線(,),以點(diǎn)()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點(diǎn),若,則的離心率為()A. B. C. D.3.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)()A.伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度B.伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將得到的圖像向左平移個(gè)單位長(zhǎng)度C.縮短到原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向左平移個(gè)單位長(zhǎng)度D.縮短到原來(lái)的倍(縱坐標(biāo)不變),再將得到的圖象向右平移個(gè)單位長(zhǎng)度4.已知i為虛數(shù)單位,則()A. B. C. D.5.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.15606.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對(duì)于恒成立,則的取值范圍是A. B. C. D.7.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,它的終邊過(guò)點(diǎn),則的值為()A. B. C. D.8.已知函數(shù)則函數(shù)的圖象的對(duì)稱軸方程為()A. B.C. D.9.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有10.已知是的共軛復(fù)數(shù),則()A. B. C. D.11.已知,,若,則向量在向量方向的投影為()A. B. C. D.12.若函數(shù)f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調(diào)遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]二、填空題:本題共4小題,每小題5分,共20分。13.若向量滿足,則實(shí)數(shù)的取值范圍是____________.14.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點(diǎn).若(點(diǎn)為坐標(biāo)原點(diǎn))的面積為32,且雙曲線的焦距為,則雙曲線的離心率為________.15.已知復(fù)數(shù),其中為虛數(shù)單位,則的模為_______________.16.已知函數(shù)若關(guān)于的不等式的解集為,則實(shí)數(shù)的所有可能值之和為_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)山東省2020年高考將實(shí)施新的高考改革方案.考生的高考總成績(jī)將由3門統(tǒng)一高考科目成績(jī)和自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目成績(jī)組成,總分為750分.其中,統(tǒng)一高考科目為語(yǔ)文、數(shù)學(xué)、外語(yǔ),自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語(yǔ)、數(shù)、外三科各占150分,選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來(lái)劃分等級(jí)并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級(jí)考試科目中考生的原始成績(jī)從高到低分為A、B+、B、C+、C、D+、D、E共8個(gè)等級(jí)。參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級(jí)考試科目成績(jī)計(jì)入考生總成績(jī)時(shí),將A至E等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).舉例說(shuō)明.某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科C+等級(jí)的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績(jī)屬C+等級(jí).而C+等級(jí)的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級(jí)分為x,69-6565-58=70-x四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績(jī)?yōu)?7.(1)某校高一年級(jí)共2000人,為給高一學(xué)生合理選科提供依據(jù),對(duì)六個(gè)選考科目進(jìn)行測(cè)試,其中物理考試原始成績(jī)基本服從正態(tài)分布ξ~N(60,12(i)若小明同學(xué)在這次考試中物理原始分為84分,等級(jí)為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績(jī);(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機(jī)抽取4人,記X表示這4人中等級(jí)成績(jī)?cè)趨^(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.(附:若隨機(jī)變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68218.(12分)已知函數(shù),.(1)若,,求實(shí)數(shù)的值.(2)若,,求正實(shí)數(shù)的取值范圍.19.(12分)某學(xué)生為了測(cè)試煤氣灶燒水如何節(jié)省煤氣的問(wèn)題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).表中,.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說(shuō)明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問(wèn)求得的回歸方程知為多少時(shí),燒開一壺水最省煤氣?附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為,20.(12分)的內(nèi)角、、所對(duì)的邊長(zhǎng)分別為、、,已知.(1)求的值;(2)若,點(diǎn)是線段的中點(diǎn),,求的面積.21.(12分)已知圓M:及定點(diǎn),點(diǎn)A是圓M上的動(dòng)點(diǎn),點(diǎn)B在上,點(diǎn)G在上,且滿足,,點(diǎn)G的軌跡為曲線C.(1)求曲線C的方程;(2)設(shè)斜率為k的動(dòng)直線l與曲線C有且只有一個(gè)公共點(diǎn),與直線和分別交于P、Q兩點(diǎn).當(dāng)時(shí),求(O為坐標(biāo)原點(diǎn))面積的取值范圍.22.(10分)已知矩陣,求矩陣的特征值及其相應(yīng)的特征向量.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
采用排除法:通過(guò)判斷函數(shù)的奇偶性排除選項(xiàng)A;通過(guò)判斷特殊點(diǎn)的函數(shù)值符號(hào)排除選項(xiàng)D和選項(xiàng)C即可求解.【詳解】對(duì)于選項(xiàng)A:由題意知,函數(shù)的定義域?yàn)椋潢P(guān)于原點(diǎn)對(duì)稱,因?yàn)?所以函數(shù)為奇函數(shù),其圖象關(guān)于原點(diǎn)對(duì)稱,故選A排除;對(duì)于選項(xiàng)D:因?yàn)?故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;故選:B【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和特殊點(diǎn)函數(shù)值符號(hào)判斷函數(shù)圖象;考查運(yùn)算求解能力和邏輯推理能力;選取合適的特殊點(diǎn)并判斷其函數(shù)值符號(hào)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.2.A【解析】
求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點(diǎn),且,則可根據(jù)圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設(shè)雙曲線的一條漸近線與圓交于,因?yàn)?,所以圓心到的距離為:,即,因?yàn)?,所以解得.故選A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想以及計(jì)算能力,屬于中檔題.對(duì)于離心率求解問(wèn)題,關(guān)鍵是建立關(guān)于的齊次方程,主要有兩個(gè)思考方向,一方面,可以從幾何的角度,結(jié)合曲線的幾何性質(zhì)以及題目中的幾何關(guān)系建立方程;另一方面,可以從代數(shù)的角度,結(jié)合曲線方程的性質(zhì)以及題目中的代數(shù)的關(guān)系建立方程.3.B【解析】
分析:根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行判斷即可.詳解:將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),
得到再將得到的圖象向左平移個(gè)單位長(zhǎng)度得到故選B.點(diǎn)睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.4.A【解析】
根據(jù)復(fù)數(shù)乘除運(yùn)算法則,即可求解.【詳解】.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)運(yùn)算,屬于基礎(chǔ)題題.5.B【解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B【點(diǎn)睛】本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.6.A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對(duì)稱又在上是增函數(shù)在上是減函數(shù),即對(duì)于恒成立在上恒成立,即的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問(wèn)題,涉及到恒成立問(wèn)題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來(lái)處理恒成立問(wèn)題.7.B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過(guò)點(diǎn),∴,.∴.故選:.【點(diǎn)睛】本題考查了三角函數(shù)定義,和差公式,意在考查學(xué)生的計(jì)算能力.8.C【解析】
,將看成一個(gè)整體,結(jié)合的對(duì)稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的對(duì)稱性的問(wèn)題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.9.C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說(shuō)法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說(shuō)法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.10.A【解析】
先利用復(fù)數(shù)的除法運(yùn)算法則求出的值,再利用共軛復(fù)數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.11.B【解析】
由,,,再由向量在向量方向的投影為化簡(jiǎn)運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題12.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調(diào)遞減,在[2,+∞)上單調(diào)遞增,所以f(x)在(-∞,2]上單調(diào)遞增,在[2,+∞)上單調(diào)遞減,故選B.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意計(jì)算,解得答案.【詳解】,故,解得.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積,意在考查學(xué)生的計(jì)算能力.14.或【解析】
用表示出的面積,求得等量關(guān)系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.【點(diǎn)睛】本題考查雙曲線的方程與性質(zhì),考查運(yùn)算求解能力以及函數(shù)與方程思想,屬中檔題.15.【解析】
利用復(fù)數(shù)模的計(jì)算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點(diǎn)睛】本題考查復(fù)數(shù)模的求法,屬于基礎(chǔ)題.16.【解析】
由分段函數(shù)可得不滿足題意;時(shí),,可得,即有,解方程可得,4,結(jié)合指數(shù)函數(shù)的圖象和二次函數(shù)的圖象即可得到所求和.【詳解】解:由函數(shù),可得的增區(qū)間為,,時(shí),,,時(shí),,當(dāng)關(guān)于的不等式的解集為,,可得不成立,時(shí),時(shí),不成立;,即為,可得,即有,顯然,4成立;由和的圖象可得在僅有兩個(gè)交點(diǎn).綜上可得的所有值的和為1.故答案為:1.【點(diǎn)睛】本題考查分段函數(shù)的圖象和性質(zhì),考查不等式的解法,注意運(yùn)用分類討論思想方法,考查化簡(jiǎn)運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(i)83.;(ii)272.(2)見(jiàn)解析.【解析】
(1)根據(jù)原始分?jǐn)?shù)分布區(qū)間及轉(zhuǎn)換分區(qū)間,結(jié)合所給示例,即可求得小明轉(zhuǎn)換后的物理成績(jī);根據(jù)正態(tài)分布滿足N60,122(2)根據(jù)各等級(jí)人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項(xiàng)分布即可求得X【詳解】(1)(i)設(shè)小明轉(zhuǎn)換后的物理等級(jí)分為x,93-8484-82求得x≈82.64.小明轉(zhuǎn)換后的物理成績(jī)?yōu)?3分;(ii)因?yàn)槲锢砜荚囋挤只痉恼龖B(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數(shù)為2000×0.136=272(人);(2)由題意得,隨機(jī)抽取1人,其等級(jí)成績(jī)?cè)趨^(qū)間61,80內(nèi)的概率為25隨機(jī)抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數(shù)學(xué)期望EX【點(diǎn)睛】本題考查了統(tǒng)計(jì)的綜合應(yīng)用,正態(tài)分布下求某區(qū)間概率的方法,分布列及數(shù)學(xué)期望的求法,文字多,數(shù)據(jù)多,需要細(xì)心的分析和理解,屬于中檔題。18.(1)1(2)【解析】
(1)求得和,由,,得,令,令導(dǎo)數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導(dǎo)數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導(dǎo)數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導(dǎo)數(shù),先證明不等式,,,,令(),利用導(dǎo)數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因?yàn)?,所以在單調(diào)遞增,又,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.故方程①有且僅有唯一解,實(shí)數(shù)的值為1.(2)解法一:令(),則,所以當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.令(),則.(i)若時(shí),,在單調(diào)遞增,所以,滿足題意.(ii)若時(shí),,滿足題意.(iii)若時(shí),,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,所以,即.變形得,,所以時(shí),,所以當(dāng)時(shí),.又由上式得,當(dāng)時(shí),,,.因此不等式(*)均成立.令(),則,(i)若時(shí),當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;故.(ii)若時(shí),,在單調(diào)遞增,所以.因此,①當(dāng)時(shí),此時(shí),,,則需由(*)知,,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),所以.②當(dāng)時(shí),此時(shí),,則當(dāng)時(shí),(由(*)知);當(dāng)時(shí),(由(*)知).故對(duì)于任意,.綜上述:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對(duì)于恒成立問(wèn)題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題.19.(1)選取更合適;(2);(3)時(shí),煤氣用量最小.【解析】
(1)根據(jù)散點(diǎn)圖的特點(diǎn),可得更適合;(2)先建立關(guān)于的回歸方程,再得出關(guān)于的回歸方程;(3)寫出函數(shù)關(guān)系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3)根據(jù)題意,設(shè),則煤氣用量,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,即時(shí),煤氣用量最小.【點(diǎn)睛】此題考查根據(jù)題意求回歸方程,利用線性回歸方程的求法得解,結(jié)合基本不等式求最值.20.(1)(2)【解析】
(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡(jiǎn)得出,根據(jù)三角形面積公式,即可得出結(jié)論.【詳解】(1)由正弦定理得即/r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年耐高溫濾料項(xiàng)目提案報(bào)告模板
- 2025年地區(qū)事業(yè)單位教師招聘考試數(shù)學(xué)學(xué)科專業(yè)知識(shí)試卷(數(shù)學(xué)分析)
- 2025年茶藝師(初級(jí))職業(yè)技能鑒定理論考試試卷(茶葉市場(chǎng)分析)
- 歷史專業(yè)古代戰(zhàn)爭(zhēng)史研究練習(xí)題
- 2025年電子商務(wù)師(初級(jí))職業(yè)技能鑒定試卷:電子商務(wù)數(shù)據(jù)分析報(bào)告撰寫
- 2025年消防工程師消防設(shè)施設(shè)備選型與消防安全設(shè)施布置試題
- 2025年聲樂(lè)演唱教師資質(zhì)認(rèn)證模擬試題
- 2025年文化旅游演藝項(xiàng)目策劃運(yùn)營(yíng):文化旅游演藝項(xiàng)目創(chuàng)新策劃與市場(chǎng)拓展研究報(bào)告
- 汽車行業(yè)供應(yīng)鏈韌性優(yōu)化與風(fēng)險(xiǎn)管理創(chuàng)新路徑報(bào)告
- 深度挖掘2025年K2教育人工智能個(gè)性化學(xué)習(xí)系統(tǒng)應(yīng)用效果與挑戰(zhàn)
- 中職數(shù)學(xué)單招一輪總復(fù)習(xí)《集合》復(fù)習(xí)課件
- 設(shè)計(jì)投標(biāo)服務(wù)方案
- 外來(lái)醫(yī)療器械清洗消毒
- 內(nèi)科學(xué)(廣東藥科大學(xué))智慧樹知到期末考試答案2024年
- 再回首混聲合唱譜
- 2023年11月南昌高新技術(shù)產(chǎn)業(yè)開發(fā)區(qū)人民檢察院招考4名聘用制檢察輔助人員筆試近6年高頻考題難、易錯(cuò)點(diǎn)薈萃答案帶詳解附后
- 珍愛(ài)生命遠(yuǎn)離溺水風(fēng)險(xiǎn)
- 運(yùn)輸行業(yè)保密知識(shí)培訓(xùn)
- 南平市浦城縣石陂鎮(zhèn)社區(qū)工作者招聘考試基礎(chǔ)題匯總2023
- 產(chǎn)能管理制度
- 《汽車發(fā)動(dòng)機(jī)構(gòu)造與維修》(配實(shí)訓(xùn)工單) 教案 5-1冷卻系結(jié)構(gòu)與循環(huán)線路(4學(xué)時(shí))
評(píng)論
0/150
提交評(píng)論