




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在△中,∠,如果,,那么cos的值為()A. B.C. D.2.如圖,在平面直角坐標系中,已知點,,以原點為位似中心,相似比為,把縮小,則點的對應點的坐標是()A.或 B. C. D.或3.用配方法解方程2x2-x-2=0,變形正確的是()A. B.=0 C. D.4.設,,是拋物線上的三點,則,,的大小關系為()A. B. C. D.5.如圖,A、B、C是⊙O上互不重合的三點,若∠CAO=∠CBO=20°,則∠AOB的度數(shù)為()A.50° B.60° C.70° D.80°6.圓錐的底面半徑是,母線為,則它的側(cè)面積是()A. B. C. D.7.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.38.關于的一元二次方程根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根9.如圖,AB是⊙O的直徑,點C,D,E在⊙O上,若∠AED=20°,則∠BCD的度數(shù)為()A.100° B.110° C.115° D.120°10.在△ABC中,點D、E分別在AB,AC上,DE∥BC,AD:DB=1:2,,則=(),A. B. C. D.二、填空題(每小題3分,共24分)11.在四邊形ABCD中,AD=BC,AD∥BC.請你再添加一個條件,使四邊形ABCD是菱形.你添加的條件是_________.(寫出一種即可)12.若是方程的一個根,則代數(shù)式的值等于______.13.等邊三角形ABC繞著它的中心,至少旋轉(zhuǎn)______度才能與它本身重合14.某小區(qū)2019年的綠化面積為3000m2,計劃2021年的綠化面積為4320m2,如果每年綠化面積的增長率相同,設增長率為x,則可列方程為______.15.半徑為10cm的半圓圍成一個圓錐,則這個圓錐的高是__cm.16.如圖,每個小正方形的邊長都為1,點A、B、C都在小正方形的頂點上,則∠ABC的正切值為_____.17.若某人沿坡度i=3∶4的斜坡前進10m,則他比原來的位置升高了_________m.18.拋物線y=(x﹣3)2﹣2的頂點坐標是_____.三、解答題(共66分)19.(10分)(1)計算(2)解不等式組:20.(6分)如圖,四邊形ABCD內(nèi)接于⊙O,AC為⊙O的直徑,D為的中點,過點D作DE∥AC,交BC的延長線于點E.(1)判斷DE與⊙O的位置關系,并說明理由;(2)若CE=,AB=6,求⊙O的半徑.21.(6分)如圖,在平面直角坐標系中,二次函數(shù)的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.(1)求這個二次函數(shù)的解析式;(2)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.22.(8分)綜合與探究問題情境:(1)如圖1,兩塊等腰直角三角板△ABC和△ECD如圖所示擺放,其中∠ACB=∠DCE=90°,點F,H,G分別是線段DE,AE,BD的中點,A,C,D和B,C,E分別共線,則FH和FG的數(shù)量關系是,位置關系是.合作探究:(2)如圖2,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)至A,C,E在一條直線上,其余條件不變,那么(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,請說明理由.(3)如圖3,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)一個銳角,那么(1)中的結(jié)論是否還成立?若成立,請證明,若不成立,請說明理由.23.(8分)如圖,在平面直角坐標系中,有一個,頂點的坐標分別是.將繞原點順時針旋轉(zhuǎn)90°得到,請在平面直角坐標系中作出,并寫出的頂點坐標.24.(8分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F(xiàn)(I)如圖①,連接AD,若,求∠B的大小;(Ⅱ)如圖②,若點F為的中點,的半徑為2,求AB的長.25.(10分)如圖,在平面直角坐標系中,直線y=﹣x+3與拋物線y=﹣x2+bx+c交于A、B兩點,點A在x軸上,點B的橫坐標為﹣1.動點P在拋物線上運動(不與點A、B重合),過點P作y軸的平行線,交直線AB于點Q,當PQ不與y軸重合時,以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設點P的橫坐標為m.(1)求b、c的值.(2)當點N落在直線AB上時,直接寫出m的取值范圍.(3)當點P在A、B兩點之間的拋物線上運動時,設正方形PQMN周長為c,求c與m之間的函數(shù)關系式,并寫出c隨m增大而增大時m的取值范圍.(4)當△PQM與y軸只有1個公共點時,直接寫出m的值.26.(10分)如圖,點A的坐標是(-2,0),點B的坐標是(0,6),C為OB的中點,將△ABC繞點B逆時針旋轉(zhuǎn)90°后得到△A′BC′,若反比例函數(shù)的圖像恰好經(jīng)過A′B的中點D,求這個反比例函數(shù)的解析式.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】先利用勾股定理求出AB的長度,從而可求.【詳解】∵∠,,∴∴故選A【點睛】本題主要考查勾股定理及余弦的定義,掌握余弦的定義是解題的關鍵.2、D【分析】利用以原點為位似中心,相似比為k,位似圖形對應點的坐標的比等于k或-k,把B點的橫縱坐標分別乘以或-即可得到點B′的坐標.【詳解】解:∵以原點O為位似中心,相似比為,把△ABO縮小,
∴點B(-9,-3)的對應點B′的坐標是(-3,-1)或(3,1).
故選D.【點睛】本題考查了位似變換:在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k.3、D【解析】用配方法解方程2?x?2=0過程如下:移項得:,二次項系數(shù)化為1得:,配方得:,即:.故選D.4、A【分析】根據(jù)二次函數(shù)的性質(zhì)得到拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,然后根據(jù)三個點離對稱軸的遠近判斷函數(shù)值的大?。驹斀狻拷猓骸邟佄锞€y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,而A(2,y1)離直線x=﹣1的距離最遠,C(﹣2,y3)點離直線x=1最近,∴.故選A.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質(zhì).5、D【分析】連接CO并延長交⊙O于點D,根據(jù)等腰三角形的性質(zhì),得∠CAO=∠ACO,∠CBO=∠BCO,結(jié)合三角形外角的性質(zhì),即可求解.【詳解】連接CO并延長交⊙O于點D,∵∠CAO=∠ACO,∠CBO=∠BCO,∴∠CAO=∠ACO=∠CBO=∠BCO=20°,∴∠AOD=∠CAO+∠ACO=40°,∠BOD=∠CBO+∠BCO=40°,∴∠AOB=∠AOD+∠BOD=80°.故選D.【點睛】本題主要考查圓的基本性質(zhì),三角形的外角的性質(zhì)以及等腰三角形的性質(zhì),添加和數(shù)的輔助線,是解題的關鍵.6、A【分析】根據(jù)圓錐的側(cè)面積=底面周長×母線長計算.【詳解】圓錐的側(cè)面面積=×6×5=15cm1.故選:A.【點睛】本題考查圓錐的側(cè)面積=底面周長×母線長,解題的關鍵是熟知公式的運用.7、D【分析】找到最簡公分母,去分母后得到關于x的一元二次方程,求解后,再檢驗是否有增根問題可解.【詳解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,檢驗:當x=1時,x2﹣4≠0,所以x=1是原方程的解;當x=-2時,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解為x=1.故選:D.【點睛】本題考查了可化為一元二次方程的分式方程的解法,解答完成后要對方程的根進行檢驗,判定是否有增根產(chǎn)生.8、A【分析】先寫出的值,計算的值進行判斷.【詳解】
方程有兩個不相等的實數(shù)根故選A【點睛】本題考查一元二次方程根的判別式,是常見考點,當時,方程有兩個不相等的實數(shù)根;當時,方程有兩個相等的實數(shù)根;當時,方程沒有實數(shù)根,熟記公式并靈活應用公式是解題關鍵.9、B【分析】連接AD,BD,由圓周角定理可得∠ABD=20°,∠ADB=90°,從而可求得∠BAD=70°,再由圓的內(nèi)接四邊形對角互補得到∠BCD=110°.【詳解】如下圖,連接AD,BD,∵同弧所對的圓周角相等,∴∠ABD=∠AED=20°,∵AB為直徑,∴∠ADB=90°,∴∠BAD=90°-20°=70°,∴∠BCD=180°-70°=110°.故選B【點睛】本題考查圓中的角度計算,熟練運用圓周角定理和內(nèi)接四邊形的性質(zhì)是關鍵.10、A【分析】根據(jù)DE∥BC得到△ADE∽△ABC,再結(jié)合相似比是AD:AB=1:3,因而面積的比是1:1.【詳解】解:如圖:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE:S△ABC=1:1.故選:A.【點睛】本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形面積的比等于相似比的平方是解答此題的關鍵.二、填空題(每小題3分,共24分)11、此題答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【分析】由在四邊形ABCD中,AD=BC,AD∥BC,可判定四邊形ABCD是平行四邊形,然后根據(jù)一組鄰邊相等的平行四邊形是菱形與對角線互相垂直的平行四邊形是菱形,即可判定四邊形ABCD是菱形,則可求得答案.【詳解】解:如圖,∵在四邊形ABCD中,AD=BC,AD∥BC,
∴四邊形ABCD是平行四邊形,
∴當AB=BC或BC=CD或CD=AD或AB=AD時,四邊形ABCD是菱形;
當AC⊥BD時,四邊形ABCD是菱形.
故答案為:此題答案不唯一,如AB=BC或BC=CD或CD=AD或AB=AD或AC⊥BD等.【點睛】此題考查了菱形的判定定理.此題屬于開放題,難度不大,注意掌握一組鄰邊相等的平行四邊形是菱形與對角線互相垂直的平行四邊形是菱形是解此題的關鍵.12、1【分析】把代入已知方程,求得,然后得的值即可.【詳解】解:把代入已知方程得,∴,故答案為1.【點睛】本題考查一元二次方程的解以及代數(shù)式求值,注意已知條件與待求代數(shù)式之間的關系.13、120【分析】根據(jù)等邊三角形的性質(zhì),結(jié)合圖形可以知道旋轉(zhuǎn)角度應該等于120°.【詳解】解:等邊△ABC繞著它的中心,至少旋轉(zhuǎn)120度能與其本身重合.【點睛】本題考查旋轉(zhuǎn)對稱圖形及等邊三角形的性質(zhì).14、3000(1+x)2=1【分析】設增長率為x,則2010年綠化面積為3000(1+x)m2,則2021年的綠化面積為3000(1+x)(1+x)m2,然后可得方程.【詳解】解:設增長率為x,由題意得:
3000(1+x)2=1,
故答案為:3000(1+x)2=1.【點睛】本題考查了由實際問題抽象出一元二次方程,關鍵是正確理解題意,找出題目中的等量關系.15、【分析】由半圓的半徑可得出圓錐的母線及底面半徑的長度,利用勾股定理即可求出圓錐的高.【詳解】設底面圓的半徑為r.∵半徑為10cm的半圓圍成一個圓錐,∴圓錐的母線l=10cm,∴,解得:r=5(cm),∴圓錐的高h(cm).故答案為5.【點睛】本題考查了圓錐的計算,利用勾股定理求出圓錐的高是解題的關鍵.16、1【解析】根據(jù)勾股定理求出△ABC的各個邊的長度,根據(jù)勾股定理的逆定理求出∠ACB=90°,再解直角三角形求出即可.【詳解】如圖:長方形AEFM,連接AC,∵由勾股定理得:AB2=32+12=10,BC2=22+12=5,AC2=22+12=5∴AC2+BC2=AB2,AC=BC,即∠ACB=90°,∴∠ABC=45°∴tan∠ABC=1【點睛】本題考查了解直角三角形和勾股定理及逆定理等知識點,能求出∠ACB=90°是解此題的關鍵.17、1.【詳解】解:如圖:由題意得,BC:AC=3:2.∴BC:AB=3:3.∵AB=10,∴BC=1.故答案為:1【點睛】本題考查解直角三角形的應用-坡度坡角問題.18、(3,﹣2)【分析】根據(jù)拋物線y=a(x﹣h)2+k的頂點坐標是(h,k)直接寫出即可.【詳解】解:拋物線y=(x﹣3)2﹣2的頂點坐標是(3,﹣2).故答案為(3,﹣2).【點睛】此題主要考查了二次函數(shù)的性質(zhì),關鍵是熟記:拋物線的頂點坐標是,對稱軸是.三、解答題(共66分)19、(1)(2)【分析】(1)先算乘方、特殊三角函數(shù)值、絕對值,再算乘法,最后算加減法即可.(2)分別解各個一元一次不等式,即可解得不等式組的解集.【詳解】(1).(2)解得解得故解集為.【點睛】本題考查了實數(shù)的混合運算和解不等式組的問題,掌握實數(shù)的混合運算法則、特殊三角函數(shù)值、絕對值的性質(zhì)、解不等式組的方法是解題的關鍵.20、(1)DE與⊙O相切;理由見解析;(2)4.【分析】(1)連接OD,由D為的中點,得到,進而得到AD=CD,根據(jù)平行線的性質(zhì)得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到結(jié)論;
(2)連接BD,根據(jù)四邊形對角互補得到∠DAB=∠DCE,由得到∠DAC=∠DCA=45°,求得△ABD∽△CDE,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)解:DE與⊙O相切證:連接OD,在⊙O中∵D為的中點∴∴AD=DC∵AD=DC,點O是AC的中點∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE經(jīng)過半徑OD的外端點D∴DE與⊙O相切.(2)解:連接BD∵四邊形ABCD是⊙O的內(nèi)接四邊形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC為⊙O的直徑,點D、B在⊙O上,∴∠ADC=∠ABC=90°∵,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴=∴=∴AD=DC=4,CE=,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=4,∴AC==8∴⊙O的半徑為4.【點睛】本題考查了直線與圓的位置關系,等腰直角三角形的性質(zhì),圓周角定理,相似三角形的判定和性質(zhì),正確的識別圖形是解題的關鍵.21、(1)y=x2﹣3x﹣4;(2)存在,P(,﹣2);(3)當P點坐標為(2,﹣6)時,△PBC的最大面積為1.【詳解】試題分析:(1)由A、B、C三點的坐標,利用待定系數(shù)法可求得拋物線解析式;(2)由題意可知點P在線段OC的垂直平分線上,則可求得P點縱坐標,代入拋物線解析式可求得P點坐標;(3)過P作PE⊥x軸,交x軸于點E,交直線BC于點F,用P點坐標可表示出PF的長,則可表示出△PBC的面積,利用二次函數(shù)的性質(zhì)可求得△PBC面積的最大值及P點的坐標.試題解析:(1)設拋物線解析式為y=ax2+bx+c,把A、B、C三點坐標代入可得,解得,∴拋物線解析式為y=x2﹣3x﹣4;(2)作OC的垂直平分線DP,交OC于點D,交BC下方拋物線于點P,如圖1,∴PO=PD,此時P點即為滿足條件的點,∵C(0,﹣4),∴D(0,﹣2),∴P點縱坐標為﹣2,代入拋物線解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在滿足條件的P點,其坐標為(,﹣2);(3)∵點P在拋物線上,∴可設P(t,t2﹣3t﹣4),過P作PE⊥x軸于點E,交直線BC于點F,如圖2,∵B(4,0),C(0,﹣4),∴直線BC解析式為y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=PF?OE+PF?BE=PF?(OE+BE)=PF?OB=(﹣t2+4t)×4=﹣2(t﹣2)2+1,∴當t=2時,S△PBC最大值為1,此時t2﹣3t﹣4=﹣6,∴當P點坐標為(2,﹣6)時,△PBC的最大面積為1.考點:二次函數(shù)綜合題.22、(1)FG=FH,F(xiàn)G⊥FH;(2)(1)中結(jié)論成立,證明見解析;(3)(1)中的結(jié)論成立,結(jié)論是FH=FG,F(xiàn)H⊥FG.理由見解析.【解析】試題分析:(1)證BE=AD,根據(jù)三角形的中位線推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;
(2)證△ACD≌△BCE,推出AD=BE,根據(jù)三角形的中位線定理即可推出答案;
(3)連接AD,BE,根據(jù)全等推出AD=BE,根據(jù)三角形的中位線定理即可推出答案.試題解析:(1)∵CE=CD,AC=BC,∴BE=AD,∵F是DE的中點,H是AE的中點,G是BD的中點,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案為相等,垂直.(2)答:成立,證明:∵CE=CD,AC=BC,∴△ACD≌△BCE,∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,F(xiàn)H⊥FG,∴(1)中的猜想還成立.(3)答:成立,結(jié)論是FH=FG,F(xiàn)H⊥FG.連接AD,BE,兩線交于Z,AD交BC于X,同(1)可證∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠CXA=∠DXB,∴∴即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,F(xiàn)H⊥FG,結(jié)論是FH=FG,F(xiàn)H⊥FG點睛:三角形的中位線平行于第三邊并且等于第三邊的一半.23、作圖見解析,【分析】連接OA、OB、OC,以O為圓心,分別以OA、OB、OC為半徑,順時針旋轉(zhuǎn)90°,分別得到OA1、OB1、OC1,連接A1B1、A1C1、B1C1即可;然后過點A作AD⊥x軸于D,過點A1作A1E⊥x軸于E,利用AAS證出△OAD≌△A1OE,然后根據(jù)全等三角形的性質(zhì)即可求出點A1的坐標,同理即可求出點B1、C1的坐標.【詳解】解:連接OA、OB、OC,以O為圓心,分別以OA、OB、OC為半徑,順時針旋轉(zhuǎn)90°,分別得到OA1、OB1、OC1,連接A1B1、A1C1、B1C1,如下圖所示,即為所求;過點A作AD⊥x軸于D,過點A1作A1E⊥x軸于E∵根據(jù)旋轉(zhuǎn)的性質(zhì)可得:OA=A1O,∠AOA1=90°∴∠AOD+∠OAD=90°,∠AOD+∠A1OE=90°∴∠OAD=∠A1OE在△OAD和△A1OE中∴△OAD≌△A1OE∴AD=OE,OD=A1E∵點A的坐標為∴AD=OE=4,OD=A1E=2∴點A1的坐標為(4,2)同理可求點B1的坐標為(1,5),點C1的坐標為(1,1)【點睛】此題考查的是圖形與坐標的變化:旋轉(zhuǎn)和全等三角形的判定及性質(zhì),掌握旋轉(zhuǎn)圖形的畫法和構(gòu)造全等三角形是解決此題的關鍵.24、(1)∠B=40°;(2)AB=6.【分析】(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD
,即可求得∠CAD=∠ADO
,繼而求得答案;
(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD
,由點F為弧AD的中點,易得△AOF是等邊三角形,繼而求得答案.【詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點F為弧AD的中點,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【點睛】本題考查了切線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),弧弦圓心角的關系,等邊三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì).熟練掌握切線的性質(zhì)是解(1)的關鍵,證明△AOF為等邊三角形是解(2)的關鍵.25、(1)b=1,c=6;(2)0<m<2或m<-1;(2)-1<m≤1且m≠0,(3)m的值為:或或或.【分析】(1)求出A、點B的坐標代入二次函數(shù)表達式即可求解;
(2)當0<m<2時,以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),此時,N點在直線AB上,同樣,當m<-1,此時,N點也在直線AB上即可求解;
(2)當-1<m<2且m≠0時,PQ=-m2+m+6-(-m+2)=-m2+2m+2,c=3PQ=-3m2+8m+12即可求解;
(3)分-1<m≤2、m≤-1,兩種情況求解即可.【詳解】(1)把y=0代入y=-x+2,得x=2.
∴點A的坐標為(0,2),
把x=-1代入y=-x+2,得y=3.
∴點B的坐標為(-1,3),
把(0,2)、(-1,3)代入y=-x2+bx+c,
解得:b=1/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司電商活動策劃方案
- 公司職員會議活動方案
- 可摘義齒固位技術(shù)-洞察及研究
- 2025年供熱通風與空調(diào)工程師考試試題及答案
- 2025年法律與生物倫理的考試試題及答案
- 2025年中國類人膠原蛋白行業(yè)市場全景分析及前景機遇研判報告
- 2024年度浙江省護師類之主管護師典型題匯編及答案
- 公寓防火安全教育
- 員工入職三級安全培訓
- DB43-T 2864-2023 土家族非遺樂器咚咚喹通.用技術(shù)要求
- 2023年黑龍江省文化和旅游系統(tǒng)事業(yè)單位人員招聘筆試模擬試題及答案解析
- 2023年江西新余市數(shù)字產(chǎn)業(yè)投資發(fā)展有限公司招聘筆試題庫含答案解析
- LY/T 3323-2022草原生態(tài)修復技術(shù)規(guī)程
- 部編版六年級語文下冊課件第1課《北京的春節(jié)》《臘八粥》
- 涂裝工模擬練習題含答案
- 2023-2024學年河南省永城市小學數(shù)學二年級下冊期末評估測試題
- 乳腺疾病的超聲診斷 (超聲科)
- 服務精神:馬里奧特之路
- 《建筑施工安全檢查標準》JGJ59-2011圖解
- 華為大學人才培養(yǎng)與發(fā)展實踐
- 醫(yī)療垃圾廢物處理課件
評論
0/150
提交評論