版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列計算正確的是()A. B. C.÷ D.2.下列運算中,正確的是()A.x3+x=x4 B.(x2)3=x6 C.3x﹣2x=1 D.(a﹣b)2=a2﹣b23.在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.4.已知反比例函數(shù)的表達式為,它的圖象在各自象限內具有y隨x的增大而增大的特點,則k的取值范圍是().A.k>-2 B. C. D.5.如圖,平行四邊形的頂點,在軸上,頂點在上,頂點在上,則平行四邊形的面積是()A. B. C. D.6.如圖所示,在平面直角坐標系中,有兩點A(4,2),B(3,0),以原點為位似中心,A'B'與AB的相似比為,得到線段A'B'.正確的畫法是()A. B. C. D.7.如圖為二次函數(shù)的圖象,在下列說法中:①;②方程的根是③;④當時,隨的增大而增大;⑤;⑥,正確的說法有()A. B. C. D.8.河堤橫斷面如圖所示,堤高BC=6米,迎水坡AB的坡比為1:,則AB的長為A.12米 B.4米 C.5米 D.6米9.定義A*B,B*C,C*D,D*B分別對應圖形①、②、③、④:那么下列圖形中,可以表示A*D,A*C的分別是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)10.如圖5,一棵大樹在一次強臺風中于離地面5米處折斷倒下,倒下部分與地面成30°夾角,這棵大樹在折斷前的高度為()A.10米 B.15米 C.25米 D.30米二、填空題(每小題3分,共24分)11.對于為零的兩個實數(shù)a,b,如果規(guī)定:a☆b=ab-b-1,那么x☆(2☆x)=0中x值為____.12.若二次函數(shù)的圖像經過點,則的值是_______.13.已知(a+b)(a+b﹣4)=﹣4,那么(a+b)=_____.14.若,則化簡成最簡二次根式為__________.15.如圖,在四邊形ABCD中,,E、F、G分別是AB、CD、AC的中點,若,,則等于______________.16.若拋物線的開口向下,寫出一個的可能值________.17.如圖所示,某建筑物有一拋物線形的大門,小明想知道這道門的高度,他先測出門的寬度,然后用一根長為的小竹竿豎直的接觸地面和門的內壁,并測得,則門高為__________.18.如圖,在平面直角坐標系中,反比例函數(shù)(x>0)與正比例函數(shù)y=kx、(k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.三、解答題(共66分)19.(10分)已知:如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交于BE的延長線于點F,且AF=DC,連接CF.(1)求證:D是BC的中點;(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結論.20.(6分)如圖,在正方形中,為邊的中點,點在邊上,且,延長交的延長線于點.(1)求證:△∽△.(2)若,求的長.21.(6分)如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結果保留根號).22.(8分)已知△ABC為等邊三角形,M為三角形外任意一點,把△ABM繞著點A按逆時針方向旋轉60°到△CAN的位置.(1)如圖①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度數(shù)和求AM的長.(2)如圖②,若∠BMC=n°,試寫出AM、BM、CM之間的數(shù)量關系,并證明你的猜想.23.(8分)如圖1,拋物線平移后過點A(8,,0)和原點,頂點為B,對稱軸與軸相交于點C,與原拋物線相交于點D.(1)求平移后拋物線的解析式并直接寫出陰影部分的面積;(2)如圖2,直線AB與軸相交于點P,點M為線段OA上一動點,為直角,邊MN與AP相交于點N,設,試探求:①為何值時為等腰三角形;②為何值時線段PN的長度最小,最小長度是多少.24.(8分)在一個不透明的袋子里有1個紅球,1個黃球和個白球,它們除顏色外其余都相同,從這個袋子里摸出一個球,記錄其顏色,然后放回,搖均勻后,重復該試驗,經過大量試驗后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求的值.25.(10分)定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.(1)如圖1,在四邊形中,,,對角線平分.求證:是四邊形的“相似對角線”;(2)如圖2,已知是四邊形的“相似對角線”,.連接,若的面積為,求的長.26.(10分)如圖,在Rt中,∠ACB﹦90°(1)求證.∽(2)若,,求的長.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)二次根式的加減法對A、B進行判斷;根據(jù)二次根式的除法法則對C進行判斷;根據(jù)完全平方公式對D進行判斷.【詳解】A、原式=2﹣,所以A選項錯誤;B、3與不能合并,所以B選項錯誤;C、原式==2,所以C選項正確;D、原式=3+4+4=7+4,所以D選項錯誤.故選:C.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當?shù)慕忸}途徑,往往能事半功倍.2、B【解析】試題分析:A、根據(jù)合并同類法則,可知x3+x無法計算,故此選項錯誤;B、根據(jù)冪的乘方的性質,可知(x2)3=x6,故正確;C、根據(jù)合并同類項法則,可知3x-2x=x,故此選項錯誤;D、根據(jù)完全平方公式可知:(a-b)2=a2-2ab+b2,故此選項錯誤;故選B.考點:1、合并同類項,2、冪的乘方運算,3、完全平方公式3、B【分析】根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經常考查的一個知識點;這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.4、C【分析】先根據(jù)反比例數(shù)的圖象在每一象限內y隨x的增大而增大得出關于k的不等式,求出k的取值范圍即可.【詳解】解:∵反比例數(shù)的圖象在每一象限內y隨x的增大而增大,
∴<0,解得k<-1.
故選:C.【點睛】本題考查的是反比例函數(shù)的性質,熟知反比例函數(shù)(k≠0)中,當k<0時,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大是解答此題的關鍵5、D【分析】先過點A作AE⊥y軸于點E,過點C作CD⊥y軸于點D,再根據(jù)反比例函數(shù)系數(shù)k的幾何意義,求得△ABE的面積=△COD的面積相等=|k2|,△AOE的面積=△CBD的面積相等=|k1|,最后計算平行四邊形的面積.【詳解】解:過點A作AE⊥y軸于點E,過點C作CD⊥y軸于點D,根據(jù)∠AEB=∠CDO=90°,∠ABE=∠COD,AB=CO可得:△ABE≌△COD(AAS),∴S△ABE與S△COD相等,又∵點C在的圖象上,∴S△ABE=S△COD=|k2|,同理可得:S△AOE=S△CBD=|k1|,∴平行四邊形OABC的面積=2(|k2|+|k1|)=|k2|+|k1|=k2-k1,故選D.【點睛】本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.6、D【分析】根據(jù)題意分兩種情況畫出滿足題意的線段A′B′,即可做出判斷.【詳解】解:畫出圖形,如圖所示:
故選D.【點睛】此題考查作圖-位似變換,解題關鍵是畫位似圖形的一般步驟為:①確定位似中心,②分別連接并延長位似中心和能代表原圖的關鍵點;③根據(jù)相似比,確定能代表所作的位似圖形的關鍵點;順次連接上述各點,得到放大或縮小的圖形.7、D【分析】根據(jù)拋物線開口向上得出a>1,根據(jù)拋物線和y軸的交點在y軸的負半軸上得出c<1,根據(jù)圖象與x軸的交點坐標得出方程ax2+bx+c=1的根,把x=1代入y=ax2+bx+c求出a+b+c<1,根據(jù)拋物線的對稱軸和圖象得出當x>1時,y隨x的增大而增大,2a=-b,根據(jù)圖象和x軸有兩個交點得出b2-4ac>1.【詳解】∵拋物線開口向上,∴a>1,∵拋物線和y軸的交點在y軸的負半軸上,∴c<1,∴ac<1,∴①正確;∵圖象與x軸的交點坐標是(-1,1),(3,1),∴方程ax2+bx+c=1的根是x1=-1,x2=3,∴②正確;把x=1代入y=ax2+bx+c得:a+b+c<1,∴③錯誤;根據(jù)圖象可知:當x>1時,y隨x的增大而增大,∴④正確;∵-=1,∴2a=-b,∴2a+b=1,不是2a-b=1,∴⑤錯誤;∵圖象和x軸有兩個交點,∴b2-4ac>1,∴⑥正確;正確的說法有:①②④⑥.故答案為:D.【點睛】本題考查了二次函數(shù)與系數(shù)的關系的應用,主要考查學生對二次函數(shù)的圖象與系數(shù)的關系的理解和運用,同時也考查了學生觀察圖象的能力,本題是一道比較典型的題目,具有一定的代表性.8、A【分析】試題分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).∴(米).故選A.【詳解】請在此輸入詳解!9、B【分析】先判斷出算式中A、B、C、D表示的圖形,然后再求解A*D,A*C.【詳解】∵A*B,B*C,C*D,D*B分別對應圖形①、②、③、④可得出A對應豎線、B對應大正方形、C對應橫線,D對應小正方形∴A*D為豎線和小正方形組合,即(2)A*C為豎線和橫線的組合,即(4)故選:B【點睛】本題考查歸納總結,解題關鍵是根據(jù)已知條件,得出A、B、C、D分別代表的圖形.10、B【分析】如圖,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根據(jù)題意找到CA=5米,由此即可求出AB,也就求出了大樹在折斷前的高度.【詳解】解:如圖,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以這棵大樹在折斷前的高度為15米.故選B.【點睛】本題主要利用定理--在直角三角形中30°的角所對的直角邊等于斜邊的一半,解題關鍵是善于觀察題目的信息,利用信息解決問題.二、填空題(每小題3分,共24分)11、0或2【分析】先根據(jù)a☆b=ab-b-1得出關于x的一元二次方程,求出x的值即可.【詳解】∵a☆b=ab-b-1,∴2☆x=2x-x-1=x-1,∴x☆(2☆x)=x☆(x-1)=0,即,解得:x1=0,x2=2;故答案為:0或2【點睛】本題考查了解一元二次方程以及新運算,理解題意正確列出一元二次方程是解題的關鍵.12、1【分析】首先根據(jù)二次函數(shù)的圖象經過點得到,再整體代值計算即可.【詳解】解:∵二次函數(shù)的圖象經過點,
∴,
∴,
∴==1,
故答案為1.【點睛】本題主要考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是利用整體代值計算,此題比較簡單.13、2【分析】設a+b=t,根據(jù)一元二次方程即可求出答案.【詳解】解:設a+b=t,原方程化為:t(t﹣4)=﹣4,解得:t=2,即a+b=2,故答案為:2【點睛】本題考查換元法及解一元二次方程,關鍵在于整體換元,簡化方程.14、【分析】根據(jù)二次根式的性質,進行化簡,即可.【詳解】===∵∴原式=,故答案是:.【點睛】本題主要考查二次根式的性質,掌握二次根式的性質,是解題的關鍵.15、36°【分析】根據(jù)三角形中位線定理得到FG∥AD,F(xiàn)G=AD,GE∥BC,GE=BC,根據(jù)等腰三角形的性質、三角形內角和定理計算即可.【詳解】解:∵F、G分別是CD、AC的中點,∴FG∥AD,F(xiàn)G=AD,∴∠FGC=∠DAC=15°,∵E、G分別是AB、AC的中點,∴GE∥BC,GE=BC,∴∠EGC=180°-∠ACB=93°,∴∠EGF=108°,∵AD=BC,∴GF=GE,∴∠FEG=×(180°-108°)=36°;故答案為:36°.【點睛】本題考查的是三角形中位線定理、等腰三角形的性質,三角形的中位線平行于第三邊,且等于第三邊的一半.16、-3(負數(shù)均可)【分析】根據(jù)二次函數(shù)的性質,所寫函數(shù)解析式二次項系數(shù)小于0即可.【詳解】解:根據(jù)二次函數(shù)的性質,二次項系數(shù)小于0時,圖象開口向下.所以a的值可以是-3..
故答案為:-3(負數(shù)均可).【點睛】此題主要考查了二次函數(shù)的圖象性質,二次項系數(shù)的正負決定了開口方向,這是解題關鍵.17、【分析】根據(jù)題意分別求出A,B,D三點的坐標,利用待定系數(shù)法求出拋物線的表達式,從而找到頂點,即可找到OE的高度.【詳解】根據(jù)題意有∴設拋物線的表達式為將A,B,D代入得解得∴當時,故答案為:.【點睛】本題主要考查二次函數(shù)的最大值,掌握待定系數(shù)法是解題的關鍵.18、2【解析】作BD⊥x軸,AC⊥y軸,OH⊥AB(如圖),設A(x1,y1),B(x2,y2),根據(jù)反比例函數(shù)k的幾何意義得x1y1=x2y2=2;將反比例函數(shù)分別與y=kx,y=聯(lián)立,解得x1=,x2=,從而得x1x2=2,所以y1=x2,y2=x1,根據(jù)SAS得△ACO≌△BDO,由全等三角形性質得AO=BO,∠AOC=∠BOD,由垂直定義和已知條件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根據(jù)AAS得△ACO≌△BDO≌△AHO≌△BHO,根據(jù)三角形面積公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2.【詳解】如圖:作BD⊥x軸,AC⊥y軸,OH⊥AB,設A(x1,y1),B(x2,y2),∵A、B在反比例函數(shù)上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=,∴x1x2=×=2,∴y1=x2,y2=x1,即OC=OD,AC=BD,∵BD⊥x軸,AC⊥y軸,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+x2y2=×2+×2=2,故答案為:2.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,反比例函數(shù)與一次函數(shù)的交點問題,全等三角形的判定與性質等,正確添加輔助線是解題的關鍵.三、解答題(共66分)19、(1)見詳解;(2)四邊形ADCF是矩形;證明見詳解.【分析】(1)可證△AFE≌△DBE,得出AF=BD,進而根據(jù)AF=DC,得出D是BC中點的結論;(2)若AB=AC,則△ABC是等腰三角形,根據(jù)等腰三角形三線合一的性質知AD⊥BC;而AF與DC平行且相等,故四邊形ADCF是平行四邊形,又AD⊥BC,則四邊形ADCF是矩形.【詳解】(1)證明:∵E是AD的中點,
∴AE=DE.
∵AF∥BC,
∴∠FAE=∠BDE,∠AFE=∠DBE.
在△AFE和△DBE中,∴△AFE≌△DBE(AAS).
∴AF=BD.
∵AF=DC,
∴BD=DC.
即:D是BC的中點.
(2)解:四邊形ADCF是矩形;
證明:∵AF=DC,AF∥DC,
∴四邊形ADCF是平行四邊形.
∵AB=AC,BD=DC,
∴AD⊥BC即∠ADC=90°.
∴平行四邊形ADCF是矩形.【點睛】此題主要考查了全等三角形的判定和性質,等腰三角形的性質,平行四邊形、矩形的判定等知識綜合運用.解題的關鍵是熟練掌握矩形的判定方法,以及全等三角形的判定和性質進行證明.20、(1)詳見解析;(2)1.【分析】(1)先根據(jù)正方形的性質、直角三角形的性質得出,再加上一組直角相等,根據(jù)相似三角形的判定定理即可得證;(2)先根據(jù)正方形的性質、中點的性質求出AE的長,再根據(jù)勾股定理求出BE的長,最后根據(jù)相似三角形的性質、線段的和差即可得.【詳解】(1)∵四邊形ABCD為正方形,且;(2)∵四邊形ABCD為正方形,點E為AD的中點在中,由(1)知,,即故的長為1.【點睛】本題考查了正方形的性質、勾股定理、相似三角形的判定定理與性質等知識點,較難的是題(2),由題(1)的結論聯(lián)系到利用相似三角形的性質是解題關鍵.21、大樹的高度為(9+3)米【分析】根據(jù)矩形性質得出,再利用銳角三角函數(shù)的性質求出問題即可.【詳解】解:如圖,過點D作DG⊥BC于G,DH⊥CE于H,則四邊形DHCG為矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,設BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大樹的高度為(9+3)米.【點睛】本題考查了仰角、坡角的定義,解直角三角形的應用,能借助仰角構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形是解題的關鍵.22、(1)60°,5;(2)AM=BM+CM【分析】(1)由旋轉性質可得△ABM≌△CAN,根據(jù)全等三角形的性質和等邊三角形的判定可得△AMN是等邊三角形,繼而求出∠AMN=60°,根據(jù)∠BMC=120°,∠AMN=∠AMC=60°,繼而求出∠AMB;AM=MN=MC+CN.(2)【詳解】解∵把△ABM繞著點A按逆時針方向旋轉60到△ACN的位置,所以∠NAM=60°,因為AN=AM,所以△AMN是等邊三角形,所以∠AMN=60°,因為∠BMC=120°,∠AMN=∠AMC=60°,所以∠AMB=∠BMG-∠AMG=120°-60°=60°,∵把△ABM繞著點A按逆時針方向旋轉60°到△ACN的位置,所以△ABM≌△CAN,所以BM=CN=2,△AMN是等邊三角形AM=MN=MC+CN=3+2=5,故答案為60°,5;(2)AM=BM+CM,∵把△ABM繞著點A按逆時針方向旋轉60°到△ACN的位置,所以△ABM≌△CAN,因為AN=AM,所以△AMN是等邊三角形,所以∠AMN=60°,因為∠BMC=n°,∠AMN=∠AMC=60°,所以∠MNA=∠MAN,所以MA=MN,所以AM=BM+CM.【點睛】本題主要考的三角形的旋轉及等邊三角形的應用以及三角形全等性質的使用,解決本題的關鍵是要熟練掌握旋轉性質和全等三角形的性質.23、(1)平移后拋物線的解析式,=12;(2)①,②當=3時,PN取最小值為.【分析】(1)設平移后拋物線的解析式y(tǒng)=x2+bx,將點A(8,0)代入,根據(jù)待定系數(shù)法即可求得平移后拋物線的解析式,再根據(jù)割補法由三角形面積公式即可求解;(2)作NQ垂直于x軸于點Q,①分當MN=AN時,當AM=AN時,當MN=MA時,三種情況討論可得△MAN為等腰三角形時t的值;②由MN所在直線方程為y=,與直線AB的解析式y(tǒng)=﹣x+6聯(lián)立,得xN的最小值為6,此時t=3,PN取最小值為.【詳解】(1)設平移后拋物線的解析式,將點A(8,,0)代入,得=,所以頂點B(4,3),所以S陰影=OC?CB=12;(2)設直線AB解析式為y=mx+n,將A(8,0)、B(4,3)分別代入得,解得:,所以直線AB的解析式為,作NQ垂直于x軸于點Q,①當MN=AN時,N點的橫坐標為,縱坐標為,由三角形NQM和三角形MOP相似可知,得,解得(舍去).當AM=AN時,AN=,由三角形ANQ和三角形APO相似可知,,MQ=,由三角形NQM和三角形MOP相似可知得:,解得:t=12(舍去);當MN=MA時,故是鈍角,顯然不成立,故;②由MN所在直線方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)酒店用地毯供應協(xié)議
- 2025年市政工程安裝安全協(xié)議范本3篇
- 2025年度XX電子商務平臺合作協(xié)議書展示3篇
- 2025年度按季度租金的劇院租賃服務協(xié)議3篇
- 2024職業(yè)病體檢合同協(xié)議
- 二零二四停薪留職協(xié)議范本:企業(yè)變革與員工權益調整3篇
- 2025年度廠房租賃安全協(xié)議及安全設施改造合同4篇
- 專屬定制版2024學校就讀合作合同版
- 2025年度醫(yī)藥行業(yè)員工勞動合同規(guī)范范本4篇
- 專享知識產權保護服務協(xié)議模板2024版
- 起重機的維護保養(yǎng)要求與月度、年度檢查記錄表
- 消防設施維護保養(yǎng)記錄表
- 城區(qū)生活垃圾填埋場封場項目 投標方案(技術方案)
- 垃圾分類巡檢督導方案
- 大一護理生涯發(fā)展展示
- 五年級上冊數(shù)學應用題100題及答案
- 中國綠色食品市場調查與分析報告
- 新生兒急救與復蘇培訓
- 外貿跟單員工作總結PPT
- UG-NX-8.5標準教程課件
- 神經科2023年度工作總結及2024年度計劃
評論
0/150
提交評論