




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
全集與補(bǔ)集塵埃數(shù)學(xué)課堂模塊一集合全集與補(bǔ)集塵埃數(shù)學(xué)課堂模塊一集合1經(jīng)典例題PARTONE1經(jīng)典例題PARTONE2已知全集U=R,A={x|-1≤x≤2},B={x|x>0},則?U(A∩B)=_____________.{x|x≤0或x>2}
A∩B={x|0<x≤2},∴?U(A
∩B)={x|x≤0或x>2}.【典例】全集與補(bǔ)集解析-1012x已知全集U=R,A={x|-1≤x≤2},B={x|x>0}2知識(shí)清單PARTTWO2知識(shí)清單PARTTWO4【知識(shí)清單】全集與補(bǔ)集1.全集(1)定義:如果一個(gè)集合含有所研究問題中涉及的
,那么就稱這個(gè)集合為全集.(2)記法:全集通常記作
.所有元素U【知識(shí)清單】全集與補(bǔ)集1.全集所有元素U思考全集一定是實(shí)數(shù)集R嗎?答案不一定.全集是一個(gè)相對(duì)概念,因研究問題的不同而變化,如在實(shí)數(shù)范圍內(nèi)解不等式,全集為實(shí)數(shù)集R,而在整數(shù)范圍內(nèi)解不等式,則全集為整數(shù)集Z.思考全集一定是實(shí)數(shù)集R嗎?答案不一定.全集是一個(gè)相對(duì)概念自然語言對(duì)于一個(gè)集合A,由全集U中
的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集,記作____符號(hào)語言?UA=_______________圖形語言
2.補(bǔ)集不屬于集合A?UA{x|x∈U,且x?A}自然語言對(duì)于一個(gè)集合A,由全集U中3同步訓(xùn)練PARTTHREE3同步訓(xùn)練PARTTHREE81.設(shè)集合U={1,2,3,4,5,6},M={1,2,4},則?UM等于A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}√解析∵U={1,2,3,4,5,6},M={1,2,4},∴?UM={3,5,6}.1231.設(shè)集合U={1,2,3,4,5,6},M={1,2,4}2.已知全集U={1,2,3,4,5},M={1,2},N={2,5},則如圖所示,陰影部分表示的集合是A.{3,4,5} B.{1,3,4} C.{1,2,5} D.{3,4}√解析由圖可知,陰影部分表示的集合是?U(M∪N).∵M(jìn)∪N={1,2,5},又U={1,2,3,4,5},∴?U(M∪N)={3,4}.1232.已知全集U={1,2,3,4,5},M={1,2},N=3.設(shè)U=R,A={x|x>0},B={x|x>1},則A∩(?UB)等于A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}√解析?UB={x|x≤1},所以A∩(?UB)={x|0<x≤1}.1233.設(shè)U=R,A={x|x>0},B={x|x>1},則A∩4方法技巧PARTFOUR4方法技巧PARTFOUR12求集合補(bǔ)集的基本方法及處理技巧(1)基本方法:定義法、韋恩圖法.(2)當(dāng)集合是用描述法表示的連續(xù)數(shù)集時(shí),可利用數(shù)軸分析求解.方法技巧求集合補(bǔ)集的基本方法及處理技巧方法技巧5小試牛刀PARTFIVE5小試牛刀PARTFIVE14交、并、補(bǔ)的綜合運(yùn)算已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(?UA)∪B,A∩(?UB),?U(A∪B).【能力提升】交、并、補(bǔ)的綜合運(yùn)算已知全集U={x|x≤4},集合A={x解如圖所示.∵A={x|-2<x<3},B={x|-3≤x≤2},U={x|x≤4},∴?UA={x|x≤-2,或3≤x≤4},?UB={x|x<-3,或2<x≤4},A∩B={x|-2<x≤2},A∪B={x|-3≤x<3}.故(?UA)∪B={x|x≤2,或3≤x≤4},A∩(?UB)={x|2<x<3},?U(A∪B)={x|x<-3,或3≤x≤4}.UAB解如圖所示.∵A={x|-2<x<3},B={x|-3≤x反思感悟解決集合交、并、補(bǔ)運(yùn)算的技巧:(1)如果所給集合是有限集,則先把集合中的元素一一列舉出來,然后結(jié)合交集、并集、補(bǔ)集的定義來求解.在解答過程中常常借助于Venn圖來求解.這樣處理起來,相對(duì)來說比較直觀、形象且解答時(shí)不易出錯(cuò).(2)如果所給集合是無限集,則常借助數(shù)軸,把已知集合及全集分別表示在數(shù)軸上,然后進(jìn)行交、并、補(bǔ)集的運(yùn)算.解答過程中要注意邊界問題.反思感悟解決集合交、并、補(bǔ)運(yùn)算的技巧:本課結(jié)束塵埃數(shù)學(xué)課堂本課結(jié)束塵埃數(shù)學(xué)課堂全集與補(bǔ)集塵埃數(shù)學(xué)課堂模塊一集合全集與補(bǔ)集塵埃數(shù)學(xué)課堂模塊一集合1經(jīng)典例題PARTONE1經(jīng)典例題PARTONE20已知全集U=R,A={x|-1≤x≤2},B={x|x>0},則?U(A∩B)=_____________.{x|x≤0或x>2}
A∩B={x|0<x≤2},∴?U(A
∩B)={x|x≤0或x>2}.【典例】全集與補(bǔ)集解析-1012x已知全集U=R,A={x|-1≤x≤2},B={x|x>0}2知識(shí)清單PARTTWO2知識(shí)清單PARTTWO22【知識(shí)清單】全集與補(bǔ)集1.全集(1)定義:如果一個(gè)集合含有所研究問題中涉及的
,那么就稱這個(gè)集合為全集.(2)記法:全集通常記作
.所有元素U【知識(shí)清單】全集與補(bǔ)集1.全集所有元素U思考全集一定是實(shí)數(shù)集R嗎?答案不一定.全集是一個(gè)相對(duì)概念,因研究問題的不同而變化,如在實(shí)數(shù)范圍內(nèi)解不等式,全集為實(shí)數(shù)集R,而在整數(shù)范圍內(nèi)解不等式,則全集為整數(shù)集Z.思考全集一定是實(shí)數(shù)集R嗎?答案不一定.全集是一個(gè)相對(duì)概念自然語言對(duì)于一個(gè)集合A,由全集U中
的所有元素組成的集合稱為集合A相對(duì)于全集U的補(bǔ)集,記作____符號(hào)語言?UA=_______________圖形語言
2.補(bǔ)集不屬于集合A?UA{x|x∈U,且x?A}自然語言對(duì)于一個(gè)集合A,由全集U中3同步訓(xùn)練PARTTHREE3同步訓(xùn)練PARTTHREE261.設(shè)集合U={1,2,3,4,5,6},M={1,2,4},則?UM等于A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}√解析∵U={1,2,3,4,5,6},M={1,2,4},∴?UM={3,5,6}.1231.設(shè)集合U={1,2,3,4,5,6},M={1,2,4}2.已知全集U={1,2,3,4,5},M={1,2},N={2,5},則如圖所示,陰影部分表示的集合是A.{3,4,5} B.{1,3,4} C.{1,2,5} D.{3,4}√解析由圖可知,陰影部分表示的集合是?U(M∪N).∵M(jìn)∪N={1,2,5},又U={1,2,3,4,5},∴?U(M∪N)={3,4}.1232.已知全集U={1,2,3,4,5},M={1,2},N=3.設(shè)U=R,A={x|x>0},B={x|x>1},則A∩(?UB)等于A.{x|0≤x<1} B.{x|0<x≤1}C.{x|x<0} D.{x|x>1}√解析?UB={x|x≤1},所以A∩(?UB)={x|0<x≤1}.1233.設(shè)U=R,A={x|x>0},B={x|x>1},則A∩4方法技巧PARTFOUR4方法技巧PARTFOUR30求集合補(bǔ)集的基本方法及處理技巧(1)基本方法:定義法、韋恩圖法.(2)當(dāng)集合是用描述法表示的連續(xù)數(shù)集時(shí),可利用數(shù)軸分析求解.方法技巧求集合補(bǔ)集的基本方法及處理技巧方法技巧5小試牛刀PARTFIVE5小試牛刀PARTFIVE32交、并、補(bǔ)的綜合運(yùn)算已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(?UA)∪B,A∩(?UB),?U(A∪B).【能力提升】交、并、補(bǔ)的綜合運(yùn)算已知全集U={x|x≤4},集合A={x解如圖所示.∵A={x|-2<x<3},B={x|-3≤x≤2},U={x|x≤4},∴?UA={x|x≤-2,或3≤x≤4},?UB={x|x<-3,或2<x≤4},A∩B={x|-2<x≤2},A∪B={x|-3≤x<3}.故(?UA)∪B={x|x≤2,或3≤x≤4},A∩(?UB)={x|2<x<3},?U(A∪B)={x|x<-3,或3≤x≤4}.UAB解如圖所示.∵A={x|-2<x<3},B={x|-3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 腫瘤防治健康宣傳周
- 職業(yè)健康體檢年度總結(jié)
- 劉光祁培訓(xùn)課件
- excel表格制作培訓(xùn)課件
- 生產(chǎn)員工質(zhì)量培訓(xùn)
- 重癥??谱o(hù)士培訓(xùn)基地匯報(bào)
- 裝備研制流程核心步驟
- 日本足球教練培訓(xùn)課件
- 職場能力提升培訓(xùn)
- 重要指導(dǎo)思想
- 成都市都江堰市青城山小學(xué)-心向往之 行必能至-五年級(jí)下英語期末家長會(huì)【課件】
- 三級(jí)養(yǎng)老護(hù)理員職業(yè)技能鑒定理論考試題(附答案)
- 創(chuàng)造性思維與創(chuàng)新方法(大連民族大學(xué))知到網(wǎng)課答案
- 學(xué)校校園餐自查報(bào)告
- 2024年廣東省陸河縣事業(yè)單位公開招聘教師崗筆試題帶答案
- 2025重慶水務(wù)環(huán)境控股集團(tuán)有限公司招聘6人筆試參考題庫附帶答案詳解
- 辦公技能實(shí)操考試試題及答案
- 空調(diào)移機(jī)安裝合同范本
- 水泥牌樓維護(hù)方案范本
- 中醫(yī)藥在氣管炎治療中的應(yīng)用
- 銀行人力資源發(fā)展計(jì)劃
評(píng)論
0/150
提交評(píng)論