




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
BriefReviewThemostimportantpropertiesofparticle1Thequantizatione.gquantizationofenergyenergylevels2Particle-WaveDualityΕ=hνP=h/λPlanck-Eistain-deBroglie
relationsParticleWaveInterferenceandDiffractionΔxΔPx≥h/4impossibletospecifysimultaneouslytheprecisepositionandmomentum.state—wavefunctionDynamic
equation—waveequationamplitudeψ*ψtheprobabilityoffindingtheparticleProbabilitywaveMathematicalBackground
andPostulatesofQuantumMechanics2.1OperatorsOperatorAnoperatorisasymbolthattellsyoutodosomethingwithwhateverfollowsthesymbol.e.g.,,,,ln,sin,d/dx
……Anoperatorisarulethattransformsagivenfunctionorvectorintoanotherfunctionorvector.e.g.2.1.1BasicPropertiesofOperatorsTwooperatorsareequalifThesumanddifferenceoftwooperatorsTheproductoftwooperatorsisdefinedbyTheidentityoperatordoesnothing(ormultipliesby1)Acommonmathematicaltrickistowritethisoperatorasasumoveracompletesetofstates(moreonthislater).TheassociativelawholdsforoperatorsThecommutativelawdoesnotgenerallyholdforoperators.Ingeneral,
Itisconvenienttodefinethequantitywhichiscalledthecommutatorofand.Notethattheordermatters,Ifandhappentocommute,thenThen-thpowerofanoperator
isdefinedasnsuccessiveapplicationsoftheoperator,e.g.Theexponentialofanoperator
isdefinedviathepowerseries2.1.2LinearOperators
Almostalloperatorsencounteredinquantummechanicsarelinearoperators.Alinearoperatorisanoperatorwhichsatisfiesthefollowingtwoconditions:
wherecisaconstantandfandgarefunctions.Asanexample,considertheoperatorsd/dxand()2.Wecanseethatd/dxisalinearoperatorbecauseHowever,()2isnotalinearoperatorbecauseTheonlyothercategoryofoperatorsrelevanttoquantummechanicsisthesetofantilinearoperators,forwhichTime-reversaloperatorsareantilinear.2.1.3EigenfunctionsandEigenvalues
Aneigenfunctionofanoperatorisafunctionusuchthattheapplicationofonugivesuagain,timesaconstantMatrixdescriptionofaneigenvalueequation2.1.4OperatorExpressionoftheTime-IndependentSchr?dingerEquationDefiniteLapacianthenDefiniteHamiltonianthen2.2PostulatesofQuantumMechanicsPostulate1Thestateofaquantummechanicalsystemiscompletelyspecifiedbyafunction(r,
t)thatdependsonthecoordinatesoftheparticle(s)andontime.Thisfunction,calledthewavefunctionorstatefunction,hastheimportantpropertythat
*(r,
t)(r,
t)distheprobabilitythattheparticleliesinthevolumeelementdlocatedatrattimet.Thewavefunctionmustbesingle-valued,continuous,andfinite.Postulate2Inanymeasurementoftheobservableassociatedwithoperator
,theonlyvaluesthatwilleverbeobservedaretheeigenvaluesa,whichsatisfytheeigenvalueequationPostulate3.Ifasystemisinastatedescribedbyawavefunction
,thentheaveragevalueoftheobservablecorrespondingto
isgivenbyPostulate4.Toeveryobservableinclassicalmechanicstherecorrespondsalinear,Hermitianoperatorinquantummechanics.Table1:Physicalobservablesandtheircorrespondingquantumoperators(singleparticle)ObservableObservableOperatorOperatorNameSymbolSymbolOperationPosition
r
Multiplyby
r
Momentum
Pi
KineticenergyT
Potentialenergy
V(r)
MultiplybyV(r)
TotalenergyE
Angularmomentumlx
ly
lz
Postulate4.Anarbitrarystatecanbeexpandedinthecompletesetofeigenvectorsof
aswherenmaygotoinfinity.InthiscaseweonlyknowthatthemeasurementofAwillyieldoneofthevaluesai,butwedon'tknowwhichone.However,wedoknowtheprobabilitythateigenvalueaiwilloccur--itistheabsolutevaluesquaredofthecoefficient,|ci|2
2.3HermitianOperatorsandUnitaryOperators2.3.1
HermitianOperatorsAsmentionedpreviously,theexpectationvalueofanoperator
isgivenbyandallphysicalobservablesarerepresentedbysuchexpectationvalues.Obviously,thevalueofaphysicalobservablesuchasenergyordensitymustbereal,sowerequire<A>tobereal.Thismeansthatwemusthave<A>=<A>*,orOperators
whichsatisfythisconditionarecalledHermitian.2.3.2UnitaryOperators
Alinearoperatorwhoseinverseisitsadjointiscalledunitary.Theseoperatorscanbethoughtofasgeneralizationsofcomplexnumberswhoseabsolutevalueis1.
U-1=U?
UU?=U?U=IAunitaryoperatorpreservesthe``lengths''and``angles''betweenvectors,anditcanbeconsideredasatypeofrotationoperatorinabstractvectorspace.LikeHermitianoperators,theeigenvectorsofaunitarymatrixareorthogonal.However,itseigenvaluesarenotnecessarilyreal.Wavefunctionψ:1Thestatedescription2ψ*ψ
Probabilitydensity3Thevalueofobservable4TheaveragevalueoftheobservableTheproblemisHowtogetWavefunction?Theonlywayis3SomeAnalyticallySolubleProblemsThemotionsofparticleTranslationalmotionRotationalmotionVibrationalmotionElectronicmotionNuclearmotionTheEnergyoftheparticle:3.1TheFreeParticleAfreeparticleisonewhichmovesthroughspacewithoutexperiencinganyforces.Henceittravelsinastraightline.Itspotentialenergyiseverywhereconstant,andsocanbeassignedtobe0.TheenergystatesareNOTquantized,butanyvalueisallowed.3.2TheParticleinaBox3.2.1The1-DimensionalParticle-in-a-Box(1)Schr?dingerEquationTheparticleofmassmisconfinedbetweentwowalls:V(x)=0(0<x<l)V(x)=∞(x≤0andx≥0)letBoundaryconditionsx=0,(0)=Asin0+Bcos0=0;B=0(x)=Asinkxx=l,(l)=Asinkl=0;sinkl=0,kl=nπsquare,
n=1,2,3……quantumnumberThegeneralsolutionsare
(x)=Asinkx+Bcoskx
n=1,2,3…...(2)PropertiesofthesolutionsTherefore,thecompletesolutiontotheproblemis(i)Thequantizationofenergy
n=1,2,3…...quantumnumberThislowest,irremovableenergyiscalledthezero-pointenergy.E=T+VThe1-DimensionalParticle-in-a-Box,V=0,E=T(a)Zero-pointenergy(b)Elorm,EClassicalorfreeparticle,E0.(ii)WavefunctionandquantumnumbernGroundstateandexcitatedstate(iii)Probabilitydistributions(iv)Applications1,3-butadieneb-carotenel=210.140nm=3.08nm.Andthelowest11energylevelswillbefilled.Carrotsareorangebecausetheabsorptionoftheshortwavelength(blue)lightleavesonlythered-orangetoreflect.(v)OrthogonalityandthebracketnotationTwowavefuctionsareorthogonaliftheirproductvanishes.e.g.Theintegralisoftenwritten<n|n’>=0(n’n)Diracbracketnotation
<n|bra|n>ketNormalizedwavefuctions<n|n>=1Thesetwoexpressionscanbecombinedintoasingleexpression:Kroneckerdelta3.3TheTwoandThree-DimensionalParticle-in-a-Box3.3.1Motionintwodimensions(1)Schr?dingerEquationInbox,V=0(2)Separationofvariablesψ=X(x)·Y(y)E=Ex+Ey(3)Thesolution(4)DegeneracyConsiderthecasenx=1,ny=2andnx=2,ny=1Whena=bWesaythatthestates|1,2>and|2,1>aredegenerate.3.3.2Motioninthreedimensions(1)Schr?dingerEquationInbox,V=0Separationofvariablesψ=X(x)·Y(y)·Z(z)E=Ex+Ey+Ez(2)Solution
(3)DegeneracyCubic,a
=b=c112121211E112=E121=E2113.4Vibrationmotion3.4.1TheHarmonicOscillator
(1)Schr?dingerEquationConsideraparticlesubjecttoarestoring
forceF=-kx,thepotentialisthenZero-point:(2)Thesolutions(i)Theenergylevelsv=0,1,2,3…(ii)Thewavefunctions3.5RotationalMotionR=ra+rbxyzrarbBAOTherigidrotorisasimplemodelofarotatingdiatomicmolecule.Weconsiderthediatomictoconsistoftwopointmassesatafixedinternucleardistance.(1)Schr?dingerEquationForarigidrotorso(2)ThesolutionsAfteralittleeffort,theeigenf
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)錦綸切片行業(yè)競(jìng)爭(zhēng)格局規(guī)劃研究報(bào)告
- 2025-2030年中國(guó)銅礦采選行業(yè)發(fā)展?fàn)顩r及營(yíng)銷戰(zhàn)略研究報(bào)告
- 2025-2030年中國(guó)蜂窩紙板市場(chǎng)運(yùn)營(yíng)狀況及投資戰(zhàn)略研究報(bào)告
- 2025-2030年中國(guó)藥學(xué)教育發(fā)展模式及未來(lái)投資戰(zhàn)略分析報(bào)告
- 2025-2030年中國(guó)聚碳酸酯pc行業(yè)運(yùn)行狀況規(guī)劃分析報(bào)告
- 2025-2030年中國(guó)粗雜糧行業(yè)競(jìng)爭(zhēng)格局及發(fā)展前景分析報(bào)告
- 2025-2030年中國(guó)空氣污染治理設(shè)備市場(chǎng)經(jīng)營(yíng)狀況及發(fā)展趨勢(shì)分析報(bào)告
- 2025-2030年中國(guó)碼垛機(jī)器人市場(chǎng)運(yùn)行動(dòng)態(tài)及發(fā)展前景分析報(bào)告
- 幼兒健康有營(yíng)養(yǎng)的蔬菜教案(12篇)
- 中國(guó)傳媒大學(xué)《電子與電工技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 學(xué)生創(chuàng)新能力培養(yǎng)方案計(jì)劃
- 各級(jí)人員及各崗位安全生產(chǎn)責(zé)任制度
- 2025年湖北省技能高考(建筑技術(shù)類)《建筑材料與檢測(cè)》模擬練習(xí)試題庫(kù)(含答案)
- 2024-2025學(xué)年第二學(xué)期教學(xué)教研工作安排表 第二版
- 七年級(jí)地理下冊(cè) 9.2 巴西說(shuō)課稿 (新版)新人教版
- 開展課外讀物負(fù)面清單管理的具體實(shí)施舉措方案
- 人體的免疫系統(tǒng)課件
- 六年級(jí)下學(xué)期開學(xué)第一課
- 體育原理課件
- 鍛件的結(jié)構(gòu)設(shè)計(jì)與工藝性分析
- 合理化建議獎(jiǎng)勵(lì)制度(共8頁(yè))
評(píng)論
0/150
提交評(píng)論