2022+AI4S全球發(fā)展觀察與展望_第1頁
2022+AI4S全球發(fā)展觀察與展望_第2頁
2022+AI4S全球發(fā)展觀察與展望_第3頁
2022+AI4S全球發(fā)展觀察與展望_第4頁
2022+AI4S全球發(fā)展觀察與展望_第5頁
已閱讀5頁,還剩209頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

r1Lhs科學(xué)智能(AI4S)全球發(fā)展觀察與展望2022版ArtificialIntelligenceforSciences(AI4S) AGlobalOutlook2022Editionr1r1r1r1AIUSGLOBALQUTLaOK2022EDITIONr1r1LhbAIMSGLOBALaUTLOaKLhb2022EDITIONMaterialsScienceinSemiconductorProcessingEfficientandaccurateatomisticmodelingofdopantmigrationusingdeepneuralnetworkXiDing,,JieLiuetal.2022/10.!016/j.mssp.2022.106515ACSAppliedAcceleratedDeepLearningDynamicsforAtomicNakataH,FilatovM,ChoiCH.DOI:Materials&LayerDepositionofAl(Me)3andWateronOH/Si202210.1021/acsami.2c0Interfaces(111)1768GeophysicalResearchLettersAnomalousBehaviorofViscosityandElectricalConductivityofMgSiOSMeltatMantleConditionsHaiyangLuo,BijayaB.Karki,DiptaB.Ghosh,HuimingBao202110.1029/2021GL095575GeophysicalThermalConductivityofSilicateLiquidJieDengandLars202110.1029/2021GL09ResearchLettersDeterminedbyMachineLearningPotentialsStixrude5806GeochemicalPerspectivesLettersDiffusionalfractionationofheliumisotopesinsilicatemeltsLuo,H.,Karki,B.B.,Ghosh,D.B.,Bao,H2021doi:10.7185/geochemlet.2128GeochimicaetCosmochimicaActaDeepneuralnetworkpotentialsfordiffusionallithiumisotopefractionationinsilicatemeltsHaiyangLuo,BijayaB.Karki,DiptaB.Ghosh,HuimingB/10.1016/j.gca.202105.051.ComputationalMaterialsScienceDevelopmentofneuralnetworkpotentialforMDsimulationanditsapplicationtoTiNTakeruMiyagawa,KazukiMori,NobuhikoKato,AkioYonezu2022https://doi.Org/10.1016/matsci,2022.111505SolarEnergyMaterialsandSolarCellsLocalstructureelucidationandpropertiespredictiononKCI-CaCI2moltensalt:AdeeppotentialmoleculardynamicsstudyBuM,LiangW,LuG,et/10.1016/j.solmat.2021.111546TheJournalofPhysicalChemistryLettersExploringcomplexreactionnetworksusingneuralChuQ,LuoKH,C/10.1021/acsnetwork-basedmoleculardynamicssimulationD.,jpclett.2c00647InorganicChemistryFrontiersTheoreticalstudyofNa+transportinthesolidstateelectrolyteNa30BrbasedondeeppotentialmoleculardynamicsLiHX,ZhouXY,WangYC,et/10.1059/D0QI00921KCombustionandFlameTrainingconvolutionalneuralnetworkstoestimateturbulentsub-gridscalereactionratesLapeyreCJ,MisdariisA,CazardN,et/10.1016/bustflame.2019.02.019AppliedPhysicsDeeplearninginter-atomicpotentialmodelforWangH,GuoX,2019/10.1065/1.5LettersaccurateirradiationdamagesimulationsZhangL,etal.098061

LhbAIMSGLOBALaUTLOaKLhb2022EDITIONEnergy&FuelsExploringtheChemicalSpaceofLinearAlkanePyrolysisviaDeepPotentialGENeratorZengJ,ZhangL,WangH,et/10.1021/acs.energyfuels.OcOS211PhysicalChemistryChemicalPhysicsbinitioneuralnetworkMDsimulationofthermaldecompositionofahighenergymaterialCL-20/TNTCaoL,ZengJ,WangB,et/10.1059/D2CP00710JComputationalMaterialsScienceMoleculardynamicssimulationsoflanthanumchloridebydeeplearningpotential!FengT,ZhaoJ,LiangW,et/10.1016/matsci.2021.111014ChemPhysChemExploringtheEffectsofIonicDefectsontheYangW,LiJ,ChenX,2022/10.1002/cpStabilityofCsPblSwithaDeepLearningPotentialetal.hc.202100841PhysicsofPlasmasWarmdensemattersimulationviaelectrontemperaturedependentdeeppotentialmoleculardynamicsZhangY,GaoC,LiuQ,et/10.1065/5.0025265TheoreticalandComputationalChemistryGrowthofPolycyclicAromaticHydrocarbonandWangB,ZengJ,Cao202210.26454/chemrxivSootInceptionbyinsilicoSimulationL,etal.-2022-qp8fcEnergyandAlMachinelearningforcombustionZhouL,SongY,JiW,et/10.1016/j.egyai.2021.100128EnergyandAlNanotwinninginduceddecreasedlatticethermalconductivityofhightemperaturethermoelectricXiaonaHuang,Y/10.1016/j.egboronsubphosphide(B12P2)fromdeeplearningpotentialsimulationsShen,QiAnyai.2022.100155.PhysicsReviewbAccurateforcefieldoftwo-dimensionalferroelectricsfromdeeplearningWu,JingLiu,Shietal.202110.1105/PhysRevB.104.174107ProteomicsDeepFunc:ADeepLearningFrameworkforAccuratePredictionofProteinFunctionsfromProteinSequencesandInteractions.Zhang,F.,Song,H.,Zeng,M.,Li,Y.,Kurgan,L.,&Li,M.2019/10.1002/pmic.201900019ChemRxivUni-Mol:AUniversal3DMolecularRepresentationLearningFrameworkZhouG,GaoZ,DingQ,etal.2022D0l:10.26454/chemrxiv-2022-jjm0jJournalofControlledReleaseComputationalpharmaceutics-AnewparadigmofdrugdeliveryWangW,YeZ,GaoH,etal.2021DOI:10.1016/j.jconrel.2021.08.050CommunicationsoftheACMArtificialintelligenceforsyntheticbiology.MohammedEslami,AaronAdler,RajmondaS.et/10.1145/5500922

LhbAIMSGLOBALaUTLOaKLhb2022EDITIONProcNatlAcadSciUSAEvolutionarilyinformeddeeplearningmethodsforWashbumJD,Mejia-/10.1075/pnpredictingrelativetranscriptabundancefrom GuerraMK,Ramst

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論