高數(shù)下冊(cè)知識(shí)點(diǎn)_第1頁(yè)
高數(shù)下冊(cè)知識(shí)點(diǎn)_第2頁(yè)
高數(shù)下冊(cè)知識(shí)點(diǎn)_第3頁(yè)
高數(shù)下冊(cè)知識(shí)點(diǎn)_第4頁(yè)
高數(shù)下冊(cè)知識(shí)點(diǎn)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第九章多元函數(shù)微分法及其應(yīng)用基本概念距離,鄰域,內(nèi)點(diǎn),外點(diǎn),邊界點(diǎn),聚點(diǎn),開(kāi)集,閉集,連通集,區(qū)域,閉區(qū)域,有界集,無(wú)界集。多元函數(shù):SKIPIF1<0,圖形:極限:SKIPIF1<0連續(xù):SKIPIF1<0偏導(dǎo)數(shù):SKIPIF1<0SKIPIF1<0方向?qū)?shù):SKIPIF1<0其中SKIPIF1<0為SKIPIF1<0的方向角。梯度:SKIPIF1<0,則SKIPIF1<0。全微分:設(shè)SKIPIF1<0,則SKIPIF1<0性質(zhì)函數(shù)可微,偏導(dǎo)連續(xù),偏導(dǎo)存在,函數(shù)連續(xù)等概念之間的關(guān)系:偏導(dǎo)數(shù)存在偏導(dǎo)數(shù)存在函數(shù)可微函數(shù)連續(xù)偏導(dǎo)數(shù)連續(xù)充分條件必要條件定義12234閉區(qū)域上連續(xù)函數(shù)的性質(zhì)(有界性定理,最大最小值定理,介值定理)微分法定義:SKIPIF1<0SKIPIF1<0復(fù)合函數(shù)求導(dǎo):鏈?zhǔn)椒▌tSKIPIF1<0若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0隱函數(shù)求導(dǎo):兩邊求偏導(dǎo),然后解方程(組)應(yīng)用極值無(wú)條件極值:求函數(shù)SKIPIF1<0的極值解方程組SKIPIF1<0求出所有駐點(diǎn),對(duì)于每一個(gè)駐點(diǎn)SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,函數(shù)有極小值,若SKIPIF1<0,SKIPIF1<0,函數(shù)有極大值;若SKIPIF1<0,函數(shù)沒(méi)有極值;若SKIPIF1<0,不定。條件極值:求函數(shù)SKIPIF1<0在條件SKIPIF1<0下的極值令:SKIPIF1<0———Lagrange函數(shù)解方程組SKIPIF1<0幾何應(yīng)用曲線的切線與法平面曲線SKIPIF1<0,則SKIPIF1<0上一點(diǎn)SKIPIF1<0(對(duì)應(yīng)參數(shù)為SKIPIF1<0)處的切線方程為:SKIPIF1<0法平面方程為:SKIPIF1<0曲面的切平面與法線曲面SKIPIF1<0,則SKIPIF1<0上一點(diǎn)SKIPIF1<0處的切平面方程為:SKIPIF1<0法線方程為:SKIPIF1<0第十章重積分二重積分定義:SKIPIF1<0性質(zhì):(6條)幾何意義:曲頂柱體的體積。計(jì)算:直角坐標(biāo)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0極坐標(biāo)SKIPIF1<0SKIPIF1<0三重積分定義:SKIPIF1<0性質(zhì):計(jì)算:直角坐標(biāo)SKIPIF1<0-------------“先一后二”SKIPIF1<0-------------“先二后一”柱面坐標(biāo)SKIPIF1<0,SKIPIF1<0球面坐標(biāo)SKIPIF1<0SKIPIF1<0應(yīng)用曲面SKIPIF1<0的面積:SKIPIF1<0求立體的體積和質(zhì)量,SKIPIF1<0平面薄片的質(zhì)量SKIPIF1<0第十二章無(wú)窮級(jí)數(shù)常數(shù)項(xiàng)級(jí)數(shù)定義:1)無(wú)窮級(jí)數(shù):SKIPIF1<0部分和:SKIPIF1<0,正項(xiàng)級(jí)數(shù):SKIPIF1<0,SKIPIF1<0交錯(cuò)級(jí)數(shù):SKIPIF1<0,SKIPIF1<02)級(jí)數(shù)收斂:若SKIPIF1<0存在,則稱級(jí)數(shù)SKIPIF1<0收斂,否則稱級(jí)數(shù)SKIPIF1<0發(fā)散3)條件收斂:SKIPIF1<0收斂,而SKIPIF1<0發(fā)散;絕對(duì)收斂:SKIPIF1<0收斂。性質(zhì):改變有限項(xiàng)不影響級(jí)數(shù)的收斂性;級(jí)數(shù)SKIPIF1<0,SKIPIF1<0收斂,則SKIPIF1<0收斂;級(jí)數(shù)SKIPIF1<0收斂,則任意加括號(hào)后仍然收斂;必要條件:級(jí)數(shù)SKIPIF1<0收斂SKIPIF1<0SKIPIF1<0.(注意:不是充分條件?。彅糠ㄕ?xiàng)級(jí)數(shù):SKIPIF1<0,SKIPIF1<0定義:SKIPIF1<0存在;SKIPIF1<0收斂SKIPIF1<0SKIPIF1<0有界;比較審斂法:SKIPIF1<0,SKIPIF1<0為正項(xiàng)級(jí)數(shù),且SKIPIF1<0若SKIPIF1<0收斂,則SKIPIF1<0收斂;若SKIPIF1<0發(fā)散,則SKIPIF1<0發(fā)散.比較法的推論:SKIPIF1<0,SKIPIF1<0為正項(xiàng)級(jí)數(shù),若存在正整數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0收斂,則SKIPIF1<0收斂;若存在正整數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0發(fā)散,則SKIPIF1<0發(fā)散.比較法的極限形式:SKIPIF1<0,SKIPIF1<0為正項(xiàng)級(jí)數(shù),若SKIPIF1<0,而SKIPIF1<0收斂,則SKIPIF1<0收斂;若SKIPIF1<0或SKIPIF1<0,而SKIPIF1<0發(fā)散,則SKIPIF1<0發(fā)散.比值法:SKIPIF1<0為正項(xiàng)級(jí)數(shù),設(shè)SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),級(jí)數(shù)SKIPIF1<0收斂;則當(dāng)SKIPIF1<0時(shí),級(jí)數(shù)SKIPIF1<0發(fā)散;當(dāng)SKIPIF1<0時(shí),級(jí)數(shù)SKIPIF1<0可能收斂也可能發(fā)散.根值法:SKIPIF1<0為正項(xiàng)級(jí)數(shù),設(shè)SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),級(jí)數(shù)SKIPIF1<0收斂;則當(dāng)SKIPIF1<0時(shí),級(jí)數(shù)SKIPIF1<0發(fā)散;當(dāng)SKIPIF1<0時(shí),級(jí)數(shù)SKIPIF1<0可能收斂也可能發(fā)散.極限審斂法:SKIPIF1<0為正項(xiàng)級(jí)數(shù),若SKIPIF1<0或SKIPIF1<0,則級(jí)數(shù)SKIPIF1<0發(fā)散;若存在SKIPIF1<0,使得SKIPIF1<0,則級(jí)數(shù)SKIPIF1<0收斂.交錯(cuò)級(jí)數(shù):萊布尼茨審斂法:交錯(cuò)級(jí)數(shù):SKIPIF1<0,SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0,則級(jí)數(shù)SKIPIF1<0收斂。任意項(xiàng)級(jí)數(shù):SKIPIF1<0絕對(duì)收斂,則SKIPIF1<0收斂。常見(jiàn)典型級(jí)數(shù):幾何級(jí)數(shù):SKIPIF1<0p-級(jí)數(shù):SKIPIF1<0函數(shù)項(xiàng)級(jí)數(shù)定義:函數(shù)項(xiàng)級(jí)數(shù)SKIPIF1<0,收斂域,收斂半徑,和函數(shù);冪級(jí)數(shù):SKIPIF1<0收斂半徑的求法:SKIPIF1<0,則收斂半徑SKIPIF1<0泰勒級(jí)數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0展開(kāi)步驟:(直接展開(kāi)法)求出SKIPIF1<0;求出SKIPIF1<0;寫出SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論