




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,矩形的對角線相交于點(diǎn),為的中點(diǎn),若,則等于().A. B. C. D.2.設(shè)等差數(shù)列的前項(xiàng)和為,若,則()A.10 B.9 C.8 D.73.一個四面體所有棱長都是4,四個頂點(diǎn)在同一個球上,則球的表面積為()A. B. C. D.4.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當(dāng)變化時,的最大值為()A. B. C. D.15.2020年是脫貧攻堅(jiān)決戰(zhàn)決勝之年,某市為早日實(shí)現(xiàn)目標(biāo),現(xiàn)將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種6.我國古代有著輝煌的數(shù)學(xué)研究成果,其中的《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn).這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學(xué)擬從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.7.如圖,正方形網(wǎng)格紙中的實(shí)線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對 B.3對C.4對 D.5對8.博覽會安排了分別標(biāo)有序號為“1號”“2號”“3號”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P29.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域?yàn)镃.的圖象關(guān)于直線對稱 D.的圖象關(guān)于點(diǎn)對稱10.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.11.已知集合,,若AB,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,.若,則_________.14.已知橢圓Г:,F(xiàn)1、F2是橢圓Г的左、右焦點(diǎn),A為橢圓Г的上頂點(diǎn),延長AF2交橢圓Г于點(diǎn)B,若為等腰三角形,則橢圓Г的離心率為___________.15.設(shè)平面向量與的夾角為,且,,則的取值范圍為______.16.已知數(shù)列的各項(xiàng)均為正數(shù),記為數(shù)列的前項(xiàng)和,若,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求曲線在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點(diǎn)個數(shù).18.(12分)在平面直角坐標(biāo)系中,直線與拋物線:交于,兩點(diǎn),且當(dāng)時,.(1)求的值;(2)設(shè)線段的中點(diǎn)為,拋物線在點(diǎn)處的切線與的準(zhǔn)線交于點(diǎn),證明:軸.19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)選修4—5;不等式選講.已知函數(shù).(1)若的解集非空,求實(shí)數(shù)的取值范圍;(2)若正數(shù)滿足,為(1)中m可取到的最大值,求證:.21.(12分)4月23日是“世界讀書日”,某中學(xué)開展了一系列的讀書教育活動.學(xué)校為了解高三學(xué)生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學(xué)生只能參加一個讀書小組)學(xué)生抽取12名學(xué)生參加問卷調(diào)查.各組人數(shù)統(tǒng)計(jì)如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學(xué)生中隨機(jī)抽取2人,用表示抽得甲組學(xué)生的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.22.(10分)市民小張計(jì)劃貸款60萬元用于購買一套商品住房,銀行給小張?zhí)峁┝藘煞N貸款方式.①等額本金:每月的還款額呈遞減趨勢,且從第二個還款月開始,每月還款額與上月還款額的差均相同;②等額本息:每個月的還款額均相同.銀行規(guī)定,在貸款到賬日的次月當(dāng)天開始首次還款(若2019年7月7日貸款到賬,則2019年8月7日首次還款).已知小張?jiān)摴P貸款年限為20年,月利率為0.004.(1)若小張采取等額本金的還款方式,現(xiàn)已得知第一個還款月應(yīng)還4900元,最后一個還款月應(yīng)還2510元,試計(jì)算小張?jiān)摴P貸款的總利息;(2)若小張采取等額本息的還款方式,銀行規(guī)定,每月還款額不得超過家庭平均月收入的一半,已知小張家庭平均月收入為1萬元,判斷小張?jiān)摴P貸款是否能夠獲批(不考慮其他因素);(3)對比兩種還款方式,從經(jīng)濟(jì)利益的角度來考慮,小張應(yīng)選擇哪種還款方式.參考數(shù)據(jù):.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用,其中解答熟記平面向量的基本定理,化簡得到是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,數(shù)基礎(chǔ)題.2.B【解析】
根據(jù)題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的求和,意在考查學(xué)生的計(jì)算能力.3.A【解析】
將正四面體補(bǔ)成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補(bǔ)形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點(diǎn)睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.4.B【解析】
根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時,有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時,有最大值設(shè)切線的方程為,化簡可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡可得即所以切線方程為或所以當(dāng)變化時,到直線的最大值為即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.5.B【解析】
分成甲單獨(dú)到縣和甲與另一人一同到縣兩種情況進(jìn)行分類討論,由此求得甲被派遣到縣的分法數(shù).【詳解】如果甲單獨(dú)到縣,則方法數(shù)有種.如果甲與另一人一同到縣,則方法數(shù)有種.故總的方法數(shù)有種.故選:B【點(diǎn)睛】本小題主要考查簡答排列組合的計(jì)算,屬于基礎(chǔ)題.6.D【解析】
利用列舉法,從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結(jié)果.【詳解】《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點(diǎn)睛】本題主要考查古典概型概率公式的應(yīng)用,屬于基礎(chǔ)題,利用古典概型概率公式求概率時,找準(zhǔn)基本事件個數(shù)是解題的關(guān)鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.7.C【解析】
畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對.【點(diǎn)睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結(jié)構(gòu)特征,考查了面面垂直的證明,屬于中檔題.8.C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點(diǎn)睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎(chǔ)題.9.D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項(xiàng)判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當(dāng),,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對稱,則解得:,故D錯誤;故選:D.【點(diǎn)睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.10.C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項(xiàng)中雙曲線的漸近線方程,由此確定選項(xiàng).【詳解】兩條漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項(xiàng)漸近線為,B選項(xiàng)漸近線為,C選項(xiàng)漸近線為,D選項(xiàng)漸近線為.所以雙曲線的方程不可能為.故選:C【點(diǎn)睛】本小題主要考查雙曲線的漸近線方程,屬于基礎(chǔ)題.11.D【解析】
先化簡,再根據(jù),且AB求解.【詳解】因?yàn)?,又因?yàn)?,且AB,所以.故選:D【點(diǎn)睛】本題主要考查集合的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12.C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時,取得等號.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】分析:首先設(shè)出相應(yīng)的直角邊長,利用余弦勾股定理得到相應(yīng)的斜邊長,之后應(yīng)用余弦定理得到直角邊長之間的關(guān)系,從而應(yīng)用正切函數(shù)的定義,對邊比臨邊,求得對應(yīng)角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設(shè),則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡整理得,即,解得,所以,故答案是.點(diǎn)睛:該題考查的是有關(guān)解三角形的問題,在解題的過程中,注意分析要求對應(yīng)角的正切值,需要求誰,而題中所給的條件與對應(yīng)的結(jié)果之間有什么樣的連線,設(shè)出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應(yīng)的等量關(guān)系,求得最后的結(jié)果.14.【解析】
由題意可得等腰三角形的兩條相等的邊,設(shè),由題可得的長,在三角形中,三角形中由余弦定理可得的值相等,可得的關(guān)系,從而求出橢圓的離心率【詳解】如圖,若為等腰三角形,則|BF1|=|AB|.設(shè)|BF2|=t,則|BF1|=2a?t,所以|AB|=a+t=|BF1|=2a?t,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,設(shè)∠BAO=θ,則∠BAF1=2θ,所以Г的離心率e=,結(jié)合余弦定理,易得在中,,所以,即e==,故答案為:.【點(diǎn)睛】此題考查橢圓的定義及余弦定理的簡單應(yīng)用,屬于中檔題.15.【解析】
根據(jù)已知條件計(jì)算出,結(jié)合得出,利用基本不等式可得出的取值范圍,利用平面向量的數(shù)量積公式可求得的取值范圍,進(jìn)而可得出的取值范圍.【詳解】,,,由得,,由基本不等式可得,,,,,因此,的取值范圍為.故答案為:.【點(diǎn)睛】本題考查利用向量的模求解平面向量夾角的取值范圍,考查計(jì)算能力,屬于中等題.16.63【解析】
對進(jìn)行化簡,可得,再根據(jù)等比數(shù)列前項(xiàng)和公式進(jìn)行求解即可【詳解】由數(shù)列為首項(xiàng)為,公比的等比數(shù)列,所以63【點(diǎn)睛】本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時,常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)答案見解析(3)答案見解析【解析】
(1)設(shè)曲線在點(diǎn),處的切線的斜率為,可求得,,利用直線的點(diǎn)斜式方程即可求得答案;(2)由(Ⅰ)知,,分時,,三類討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類討論,即可判斷函數(shù)的零點(diǎn)個數(shù).【詳解】(1),,設(shè)曲線在點(diǎn),處的切線的斜率為,則,又,曲線在點(diǎn),處的切線方程為:,即;(2)由(1)知,,故當(dāng)時,,所以在上單調(diào)遞增;當(dāng)時,,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時,同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時,單調(diào)遞增為,無遞減區(qū)間;當(dāng)時,的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時,的遞增區(qū)間為,遞減區(qū)間為,;(3)當(dāng)時,恒成立,所以無零點(diǎn);當(dāng)時,由,得:,只有一個零點(diǎn).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類討論思想與推理、運(yùn)算能力,屬于中檔題.18.(1)1;(2)見解析【解析】
(1)設(shè),,聯(lián)立直線和拋物線方程,得,寫出韋達(dá)定理,根據(jù)弦長公式,即可求出;(2)由,得,根據(jù)導(dǎo)數(shù)的幾何意義,求出拋物線在點(diǎn)點(diǎn)處切線方程,進(jìn)而求出,即可證出軸.【詳解】解:(1)設(shè),,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設(shè),,由,得,從而拋物線在點(diǎn)點(diǎn)處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,涉及聯(lián)立方程組、韋達(dá)定理、弦長公式以及利用導(dǎo)數(shù)求切線方程,考查轉(zhuǎn)化思想和計(jì)算能力.19.(1)見解析;(2)【解析】
(Ⅰ)證明:過點(diǎn)作于點(diǎn),∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點(diǎn)是的中點(diǎn),連結(jié),則∴平面∴∥,∴四邊形是矩形設(shè),得:,又∵,∴,從而,過作于點(diǎn),則∴是與平面所成角∴,∴與平面所成角的正弦值為考點(diǎn):面面垂直的性質(zhì)定理;線面平行的判定定理;線面垂直的性質(zhì)定理;直線與平面所成的角.點(diǎn)評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的常考題型,較難.本題也可以用向量法來做:用向量法解題的關(guān)鍵是;首先正確的建立空間直角坐標(biāo)系,正確求解平面的一個法向量.注意計(jì)算要仔細(xì)、認(rèn)真.≌20.(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因?yàn)?,要證,只需證,即證,只需證即可得結(jié)果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實(shí)數(shù)的取值范圍為.(2)由(1)知,,所以.因?yàn)?,所以要證,只需證,即證,即證.因?yàn)?,所以只需證,因?yàn)?,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設(shè):證明:x+y-2xy==令,∴原式====當(dāng)時,21.(1)(2)見解析,【解析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學(xué)生中隨機(jī)抽取2人,基本事件總數(shù)為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學(xué)生中隨機(jī)抽取2人,而甲、丙兩個小組學(xué)生分別有4人和2人,所以抽取的兩人中是甲組的學(xué)生的人數(shù)的可能取值為0,1,2,分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能教育與培訓(xùn)解決方案合作協(xié)議
- 保密協(xié)議金融方面
- 影視行業(yè)制作管理與后期剪輯方案
- Unit8 lesson 6教學(xué)設(shè)計(jì) - 2024-2025學(xué)年冀教版英語七年級上冊
- 川教版三上信息技術(shù)3.2 添加角色 教學(xué)設(shè)計(jì)
- 全國冀教版信息技術(shù)四年級上冊新授課 第7課 Internet Explorer下載 教學(xué)設(shè)計(jì)
- 2025年簡易網(wǎng)站服務(wù)合同5篇
- 19 食物與營養(yǎng) 教學(xué)設(shè)計(jì)-2024-2025學(xué)年科學(xué)三年級上冊蘇教版
- 電子支付商戶合作協(xié)議8篇
- 標(biāo)準(zhǔn)駕校培訓(xùn)合同范本8篇
- 高中轉(zhuǎn)學(xué)申請書
- 2025年企業(yè)合伙聯(lián)營框架協(xié)議模板(2篇)
- 中國電信行業(yè)人工智能行業(yè)市場調(diào)研及投資規(guī)劃建議報(bào)告
- 2024年山東海洋集團(tuán)有限公司社會招聘考試真題
- 小學(xué)生拗九節(jié)課件
- 《感冒中醫(yī)治療》課件
- 研發(fā)費(fèi)用管理制度內(nèi)容
- 壓力容器設(shè)計(jì)委托書
- 《眉毛的基本技法》課件
- 人教版PEP小學(xué)五年級英語下冊全冊教案(含計(jì)劃)
- 2023年中考英語話題復(fù)習(xí)課件 健康與飲食
評論
0/150
提交評論