渭南市重點中學(xué)2022年九年級數(shù)學(xué)上冊期末學(xué)業(yè)水平測試試題含解析_第1頁
渭南市重點中學(xué)2022年九年級數(shù)學(xué)上冊期末學(xué)業(yè)水平測試試題含解析_第2頁
渭南市重點中學(xué)2022年九年級數(shù)學(xué)上冊期末學(xué)業(yè)水平測試試題含解析_第3頁
渭南市重點中學(xué)2022年九年級數(shù)學(xué)上冊期末學(xué)業(yè)水平測試試題含解析_第4頁
渭南市重點中學(xué)2022年九年級數(shù)學(xué)上冊期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖是一根空心方管,則它的主視圖是()A. B. C. D.2.下列圖形中是中心對稱圖形的有()個.A.1 B.2 C.3 D.43.如圖,將一副三角板如圖放置,如果,那么點到的距離為()A. B. C. D.4.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃5.用配方法解方程時,配方結(jié)果正確的是()A. B.C. D.6.如圖,在中,,,為邊上的一點,且.若的面積為,則的面積為()A. B. C. D.7.計算的結(jié)果等于()A.-6 B.6 C.-9 D.98.如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結(jié)論:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正確的有()A.1個 B.2個 C.3個 D.4個9.下列函數(shù)的圖象,不經(jīng)過原點的是()A. B.y=2x2 C.y=(x﹣1)2﹣1 D.10.下列成語所描述的事件是必然發(fā)生的是()A.水中撈月 B.拔苗助長 C.守株待兔 D.甕中捉鱉11.如圖,BD是⊙O的直徑,圓周角∠A=30,則∠CBD的度數(shù)是()A.30 B.45 C.60 D.8012.如圖,已知扇形BOD,DE⊥OB于點E,若ED=OE=2,則陰影部分面積為()A. B. C. D.二、填空題(每題4分,共24分)13.將拋物線向上平移3個單位長度,再向右平移2個單位長度,所得到的拋物線解析式為______.14.如圖,在矩形ABCD中,,對角線AC,BD交于點O,點M,N分別為OB,OC的中點,則的面積為____________.15.一元二次方程x2﹣4x+4=0的解是________.16.如圖,點在反比例函數(shù)的圖象上,過點作AB⊥軸,AC⊥軸,垂足分別為點,若,,則的值為____.17.二次函數(shù)圖像的頂點坐標為_________.18.如圖,在直角三角形中,是斜邊上的高,,則的值為___.三、解答題(共78分)19.(8分)如圖,已知拋物線y=﹣x2+bx+3的對稱軸為直線x=﹣1,分別與x軸交于點A,B(A在B的左側(cè)),與y軸交于點C.(1)求b的值;(2)若將線段BC繞點C順時針旋轉(zhuǎn)90°得到線段CD,問:點D在該拋物線上嗎?請說明理由.20.(8分)如圖,在平面直角坐標系xOy中,函數(shù)y=(x<0)的圖象經(jīng)過點A(﹣1,6).(1)求k的值;(2)已知點P(a,﹣2a)(a<0),過點P作平行于x軸的直線,交直線y=﹣2x﹣2于點M,交函數(shù)y=(x<0)的圖象于點N.①當a=﹣1時,求線段PM和PN的長;②若PN≥2PM,結(jié)合函數(shù)的圖象,直接寫出a的取值范圍.21.(8分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE,將△EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn)①當時,;②當時,(2)拓展探究試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情況給出證明.(3)問題解決當△EDC旋轉(zhuǎn)至A、D、E三點共線時,直接寫出線段BD的長.22.(10分)已知AD為⊙O的直徑,BC為⊙O的切線,切點為M,分別過A,D兩點作BC的垂線,垂足分別為B,C,AD的延長線與BC相交于點E.(1)求證:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的長.23.(10分)用適當?shù)姆椒ń夥匠蹋?)4(x-1)2=9(2)24.(10分)如圖,某居民樓的前面有一圍墻,在點處測得樓頂?shù)难鼋菫?,在處測得樓頂?shù)难鼋菫?,且的高度?米,之間的距離為20米(,,在同一條直線上).(1)求居民樓的高度.(2)請你求出、兩點之間的距離.(參考數(shù)據(jù):,,,結(jié)果保留整數(shù))25.(12分)如圖,是⊙的弦,交于點,過點的直線交的延長線于點,且是⊙的切線.(1)判斷的形狀,并說明理由;(2)若,求的長;(3)設(shè)的面積是的面積是,且.若⊙的半徑為,求.26.如圖,在△ABC中,AB=AC=10,∠B=30°,O是線段AB上的一個動點,以O(shè)為圓心,OB為半徑作⊙O交BC于點D,過點D作直線AC的垂線,垂足為E.(1)求證:DE是⊙O的切線;(2)設(shè)OB=x,求∠ODE的內(nèi)部與△ABC重合部分的面積y的最大值.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)從正面看得到的圖形是主視圖,可得答案.【詳解】解:從正面看是:大正方形里有一個小正方形,∴主視圖為:

故選:B.【點睛】本題考查了簡單組合體的三視圖,從正面看得到的圖形是主視圖,注意看不到的線畫虛線.2、B【解析】∵正三角形是軸對稱能圖形;平行四邊形是中心對稱圖形;正五邊形是軸對稱圖形;正六邊形既是中心對稱圖形又是軸對稱圖形,∴中心對稱圖形的有2個.故選B.3、B【分析】作EF⊥BC于F,設(shè)EF=x,根據(jù)三角函數(shù)分別表示出BF,CF,根據(jù)BD∥EF得到△BCD∽△FCE,得到,代入即可求出x.【詳解】如圖,作EF⊥BC于F,設(shè)EF=x,又∠ABC=45°,∠DCB=30°,則BF=EF÷tan45°=x,FC=EF÷tan30°=x∵BD∥EF∴△BCD∽△FCE,∴,即解得x=,x=0舍去故EF=,選B.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知相似三角形的判定及解直角三角形的應(yīng)用.4、A【分析】一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.【詳解】∵“正”和“負”相對,∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.5、A【分析】利用配方法把方程變形即可.【詳解】用配方法解方程x2﹣6x﹣8=0時,配方結(jié)果為(x﹣3)2=17,故選A.【點睛】本題考查了解一元二次方程﹣配方法,熟練掌握配方法解一元二次方程的基本步驟是解本題的關(guān)鍵.6、C【分析】根據(jù)相似三角形的判定定理得到,再由相似三角形的性質(zhì)得到答案.【詳解】∵,,∴,∴,即,解得,的面積為,∴的面積為:,故選C.【點睛】本題考查相似三角形的判定定理和性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的判定定理和性質(zhì).7、D【分析】根據(jù)有理數(shù)乘方運算的法則計算即可.【詳解】解:,故選:D.【點睛】本題考查了有理數(shù)的乘方,掌握運算法則是解題的關(guān)鍵.8、B【解析】由圖象與x軸有交點,可以推出b2-4ac>0,即b2>4ac,①正確;由對稱軸為x=-b2a=-1可以判定②錯誤;由x=-1時,y>0,可知③錯誤.把x=1,x=﹣【詳解】①∵圖象與x軸有交點,對稱軸為x=-b2a=﹣1,與y軸的交點在又∵二次函數(shù)的圖象是拋物線,∴與x軸有兩個交點,∴b2﹣4ac>0,即b2>4ac,故本選項正確,②∵對稱軸為x=-b2a=﹣∴2a=b,∴2a-b=0,故本選項錯誤,③由圖象可知x=﹣1時,y>0,∴a﹣b+c>0,故本選項錯誤,④把x=1,x=﹣3代入解析式得a+b+c=0,9a﹣3b+c=0,兩邊相加整理得5a+c=b,∵c>0,即5a<b,故本選項正確.故選:B.【點睛】本題考查了二次函數(shù)圖像與各系數(shù)的關(guān)系,解答本題關(guān)鍵是掌握二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.9、D【分析】根據(jù)函數(shù)圖象上的點的坐標特征可以知道,經(jīng)過原點的函數(shù)圖象,點(0,0)一定在函數(shù)的解析式上;反之,點(0,0)一定不在函數(shù)的解析式上.【詳解】解:A、當x=0時,y=0,即該函數(shù)圖象一定經(jīng)過原點(0,0).故本選項錯誤;B、當x=0時,y=0,即該函數(shù)圖象一定經(jīng)過原點(0,0).故本選項錯誤;C、當x=0時,y=0,即該函數(shù)圖象一定經(jīng)過原點(0,0).故本選項錯誤;D、當x=0時,原方程無解,即該函數(shù)圖象一定不經(jīng)過原點(0,0).故本選項正確.故選:D.【點睛】本題考查了函數(shù)的圖象,熟悉正比例函數(shù),二次函數(shù)和反比例函數(shù)圖象的特點是解題關(guān)鍵.10、D【分析】必然事件是指一定會發(fā)生的事件;不可能事件是指不可能發(fā)生的事件;隨機事件是指可能發(fā)生也可能不發(fā)生的事件.根據(jù)定義,對每個選項逐一判斷【詳解】解:A選項,不可能事件;B選項,不可能事件;C選項,隨機事件;D選項,必然事件;故選:D【點睛】本題考查了必然事件、不可能事件、隨機事件,正確理解必然事件、不可能事件、隨機事件的定義是本題的關(guān)鍵11、C【解析】由BD為⊙O的直徑,可證∠BCD=90°,又由圓周角定理知,∠D=∠A=30°,即可求∠CBD.【詳解】解:如圖,連接CD,∵BD為⊙O的直徑,∴∠BCD=90°,∴∠D=∠A=30°,∴∠CBD=90°-∠D=60°.故選C.【點睛】本題利用了直徑所對的圓周角是直角和圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.12、B【分析】由題意可得△ODE為等腰直角三角形,可得出扇形圓心角為45°,再根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】解:∵DE⊥OB,OE=DE=2,

∴△ODE為等腰直角三角形,∴∠O=45°,OD=OE=2.∴S陰影部分=S扇形BOD-S△OED=

故答案為:B.【點睛】本題考查的是扇形面積計算、等腰直角三角形的性質(zhì),利用轉(zhuǎn)化法求陰影部分的面積是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:將拋物線y=2x2向上平移3個單位長度,再向右平移2個單位長度后,得到的拋物線的解析式為,

故答案為:【點睛】本題考查的是二次函數(shù)的圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.14、【分析】由矩形的性質(zhì)可推出△OBC的面積為△ABC面積的一半,然后根據(jù)中位線的性質(zhì)可推出△OMN的面積為△OBC面積的,即可得出答案.【詳解】∵四邊形ABCD為矩形∴∠ABC=90°,BC=AD=4,O為AC的中點,∴又∵M、N分別為OB、OC的中點∴MN=BC,MN∥BC∴△OMN∽△OBC∴∴故答案為:.【點睛】本題考查了矩形的性質(zhì),中位線的判定與性質(zhì),相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的面積比等于相似比的平方.15、x1=x2=2【分析】根據(jù)配方法即可解方程.【詳解】解:x2﹣4x+4=0(x-2)2=0∴x1=x2=2【點睛】本題考查了用配方法解一元二次方程,屬于簡單題,選擇配方法是解題關(guān)鍵.16、【分析】求出點A坐標,即可求出k的值.【詳解】解:根據(jù)題意,設(shè)點A的坐標為(x,y),∵,,AB⊥軸,AC⊥軸,∴點A的橫坐標為:;點A的縱坐標為:;∵點A在反比例函數(shù)的圖象上,∴;故答案為:.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,解題的關(guān)鍵是熟練掌握反比例函數(shù)圖象上點的坐標特征.17、(,)【分析】用配方法將拋物線的一般式轉(zhuǎn)化為頂點式,確定頂點坐標即可.【詳解】∵

∴拋物線頂點坐標為.

故本題答案為:.【點睛】本題考查了拋物線解析式與頂點坐標的關(guān)系,求頂點坐標可用配方法,也可以用頂點坐標公式.18、【分析】證明,從而求出CD的長度,再求出即可.【詳解】∵是斜邊上的高∴∵∴∴∴解得(舍去)∴在中故答案為:.【點睛】本題考查了相似三角形的判定以及三角函數(shù),掌握相似三角形的性質(zhì)以及判定是解題的關(guān)鍵.三、解答題(共78分)19、(1)b=﹣2;(2)點D不在該拋物線上,見解析【分析】(1)根據(jù)拋物線的對稱軸公式,可求出b的值,(2)確定函數(shù)關(guān)系式,進而求出與x軸、y軸的交點坐標,由旋轉(zhuǎn)可得全等三角形,進而求出點D的坐標,代入關(guān)系式驗證即可.【詳解】解:(1)∵拋物線y=﹣x2+bx+3的對稱軸為直線x=﹣1,∴=﹣1,∴b=﹣2;(2)當x=0時,y=3,因此點C(0,3),即OC=3,當y=0時,即﹣x2+bx+3=0,解得x1=﹣3,x2=1,因此OB=1,OA=3,如圖,過點D作DE⊥y軸,垂足為E,由旋轉(zhuǎn)得,CB=CD,∠BCD=90°,∵∠OBC+∠BCO=90°=∠BCO+∠ECD,∴∠OBC=∠ECD,∴△BOC≌△CDE(AAS),∴OB=CE=1,OC=DE=3,∴D(﹣3,2)當x=﹣3時,y=﹣9+6+3=0≠2,∴點D不在該拋物線上.【點睛】本題主要考查的是二次函數(shù)的綜合應(yīng)用,掌握對稱軸的求解公式以及看一個點是否在二次函數(shù)上,只需要把點代入二次函數(shù)解析式看等式是否成立即可.20、(1)k=-3;(3)①PM=1,PN=3;②a≤﹣3或﹣1≤a<1.【分析】(1)把點A(﹣1,3)代入解析式即可求解;(3)①當a=﹣1時,點P的坐標為(﹣1,3),把y=3分別代入y=﹣3x﹣3與y=﹣即可求得M、N的坐標,進一步即可求得PM、PN;②先求出PN=3PM時a的值,再根據(jù)函數(shù)的圖象即可求解.【詳解】(1)∵函數(shù)y=(x<1)的圖象經(jīng)過點A(﹣1,3).∴k=﹣1×3=﹣3.(3)①當a=﹣1時,點P的坐標為(﹣1,3).∵直線y=﹣3x﹣3,反比例函數(shù)的解析式為y=﹣,PN∥x軸,∴把y=3代入y=﹣3x﹣3,求得x=﹣3,代入y=﹣求得x=﹣3,∴M(﹣3,3),N(﹣3,3),∴PM=1,PN=3.②把y=-3a代入y=﹣3x﹣3,求得x=a-1;代入y=﹣求得x=,∴M點的坐標為(a-1,-3a),N點的坐標為(,-3a)當PN=3PM時,,解得:a=±1或±3(負值舍去)∴當a=﹣1或a=﹣3時,PN=3PM,∴根據(jù)圖象PN≥3PM,a的取值范圍為a≤﹣3或﹣1≤a<1.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的圖象,反比例函數(shù)圖象上點的坐標特征,一次函數(shù)圖象上點的坐標特征,利用數(shù)形結(jié)合是解題的關(guān)鍵.21、(1)①,②.(2)無變化;理由參見解析.(3),.【分析】(1)①當α=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出的值是多少.②α=180°時,可得AB∥DE,然后根據(jù),求出的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據(jù),判斷出△ECA∽△DCB,即可求出的值是多少,進而判斷出的大小沒有變化即可.(3)根據(jù)題意,分兩種情況:①點A,D,E所在的直線和BC平行時;②點A,D,E所在的直線和BC相交時;然后分類討論,求出線段BD的長各是多少即可.【詳解】(1)①當α=0°時,∵Rt△ABC中,∠B=90°,∴AC=,∵點D、E分別是邊BC、AC的中點,∴,BD=8÷2=4,∴.②如圖1,,當α=180°時,可得AB∥DE,∵,∴(2)如圖2,,當0°≤α<360°時,的大小沒有變化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如圖3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四邊形ABCD是矩形,∴BD=AC=.②如圖4,連接BD,過點D作AC的垂線交AC于點Q,過點B作AC的垂線交AC于點P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵點D、E分別是邊BC、AC的中點,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.綜上所述,BD的長為或.22、(1)證明見解析(2)4【分析】(1)由AD為直徑,得到所對的圓周角為直角,利用等角的余角相等得到一對角相等,進而利用兩對角對應(yīng)相等的三角形相似即可得證;(2)連接OM,由BC為圓的切線,得到OM與BC垂直,利用銳角三角函數(shù)定義及勾股定理即可求出所求.【詳解】解:(1)∵AD為圓O的直徑,∴∠AMD=90°.∵∠BMC=180°,∴∠2+∠3=90°.∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,∴△ABM∽△MCD;(2)連接OM.∵BC為圓O的切線,∴OM⊥BC.∵AB⊥BC,∴sin∠E==,即=.∵AD=8,AB=5,∴=,即OE=16,根據(jù)勾股定理得:ME===4.【點睛】本題考查了相似三角形的判定與性質(zhì),圓周角定理,銳角三角函數(shù)定義以及切線的性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.23、(1),;(2),【分析】(1)先在方程的兩邊同時除以4,再直接開方即可;(2)將常數(shù)項移到等式的右邊,再兩邊配上一次項系數(shù)的一半可得.【詳解】(1)解:∴,,(2)解:∴,.【點睛】本題主要考查配方法解一元二次方程,熟練掌握配方法的基本步驟是解題的關(guān)鍵.24、(1)居民樓的高約為22米;(2)、之間的距離約為48米【分析】(1)過點作,垂足為,設(shè)為在中及中,根據(jù)三角函數(shù)即可求得答案;(2)方法一:在中,根據(jù),即可求得AE的值.方法二:在中,根據(jù),即可求得AE的值.【詳解】(1)如圖,過點作,垂足為,∴四邊形為矩形,∴,.設(shè)為.在中,,∴,∴.在中,,,∵,∴,∴.答:居民樓的高約為22米.(2)方法一:由(1)可得.在中,,∴,∴,即、之間的距離約為46米.方法二:由(1)得.在中,,∴,∴,即、之間的距離約為48米.(注:此題學(xué)生算到46或48都算正確)【點睛】本題考查了解直角三角形的應(yīng)用,構(gòu)造直角三角形,得出三角函數(shù)的關(guān)系是解題的關(guān)鍵.25、(1)是等腰三角形,理由見解析;(2)的長為;(3).【解析】(1)首先連接OB,根據(jù)等腰三角形的性質(zhì)由OA=OB得,由點C在過點B的切線上,且,根據(jù)等角的余角相等,易證得∠PBC=∠CPB,即可證得△CBP是等腰三角形;(2)設(shè)BC=x,則PC=x,在Rt△OBC中,根據(jù)勾股定理得到,然后解方程即可;(3)作CD⊥BP于D,由等腰三角形三線合一的性質(zhì)得,由,通過證得,得出即可求得CD,然后解直角三角形即可求得.【詳解】(1)是等腰三角形,理由:連接,⊙與相切與點,,即,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論