




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.2.已知定義在上的函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.3.已知橢圓內(nèi)有一條以點為中點的弦,則直線的方程為()A. B.C. D.4.已知為實數(shù)集,,,則()A. B. C. D.5.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個單位后得到的函數(shù)圖象關(guān)于直線x=對稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)6.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.77.設(shè)為非零實數(shù),且,則()A. B. C. D.8.設(shè)正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.369.要得到函數(shù)的圖象,只需將函數(shù)圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度10.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.11.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.12.1777年,法國科學(xué)家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則________.14.在正奇數(shù)非減數(shù)列中,每個正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.15.函數(shù)過定點________.16.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應(yīng)該為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.18.(12分)設(shè)首項為1的正項數(shù)列{an}的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.19.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.20.(12分)已知橢圓:的左、右焦點分別為,,焦距為2,且經(jīng)過點,斜率為的直線經(jīng)過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.21.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關(guān)疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預(yù)測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(?。┊?月25日至1月27日這3天的誤差(模型預(yù)測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領(lǐng)導(dǎo)下,全國人民共同采取了強力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預(yù)測數(shù)據(jù),則認為防護措施有效,請判斷預(yù)防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850722.(10分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應(yīng)于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計算最值,即可得出答案.2.D【解析】
先判斷函數(shù)在時的單調(diào)性,可以判斷出函數(shù)是奇函數(shù),利用奇函數(shù)的性質(zhì)可以得到,比較三個數(shù)的大小,然后根據(jù)函數(shù)在時的單調(diào)性,比較出三個數(shù)的大小.【詳解】當時,,函數(shù)在時,是增函數(shù).因為,所以函數(shù)是奇函數(shù),所以有,因為,函數(shù)在時,是增函數(shù),所以,故本題選D.【點睛】本題考查了利用函數(shù)的單調(diào)性判斷函數(shù)值大小問題,判斷出函數(shù)的奇偶性、單調(diào)性是解題的關(guān)鍵.3.C【解析】
設(shè),,則,,相減得到,解得答案.【詳解】設(shè),,設(shè)直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內(nèi)點差法求直線方程,意在考查學(xué)生的計算能力和應(yīng)用能力.4.C【解析】
求出集合,,,由此能求出.【詳解】為實數(shù)集,,,或,.故選:.【點睛】本題考查交集、補集的求法,考查交集、補集的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.5.D【解析】
由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因為函數(shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個單位后,得到圖像所對應(yīng)的函數(shù)解析式為,由此函數(shù)圖像關(guān)于直線對稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【點睛】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)三角函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了推理與運算能力.6.B【解析】
根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.7.C【解析】
取,計算知錯誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運用.8.B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設(shè)正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.9.B【解析】
分析:根據(jù)三角函數(shù)的圖象關(guān)系進行判斷即可.詳解:將函數(shù)圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數(shù)的圖象變換,結(jié)合和的關(guān)系是解決本題的關(guān)鍵.10.D【解析】
構(gòu)造函數(shù),,利用導(dǎo)數(shù)分析出這兩個函數(shù)在區(qū)間上均為減函數(shù),由得出,分、、三種情況討論,利用放縮法結(jié)合函數(shù)的單調(diào)性推導(dǎo)出或,再利用余弦函數(shù)的單調(diào)性可得出結(jié)論.【詳解】構(gòu)造函數(shù),,則,,所以,函數(shù)、在區(qū)間上均為減函數(shù),當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數(shù)在區(qū)間上單調(diào)遞增,函數(shù)在區(qū)間上單調(diào)遞增,則,;③若,則,則,此時,由于函數(shù)在區(qū)間上單調(diào)遞減,函數(shù)在區(qū)間上單調(diào)遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數(shù)單調(diào)性的應(yīng)用,構(gòu)造新函數(shù)是解本題的關(guān)鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.11.B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.12.D【解析】
根據(jù)統(tǒng)計數(shù)據(jù),求出頻率,用以估計概率.【詳解】.故選:D.【點睛】本題以數(shù)學(xué)文化為背景,考查利用頻率估計概率,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項式定理,屬于中檔題14.2【解析】
將已知數(shù)列分組為(1),,共個組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.15.【解析】
令,,與參數(shù)無關(guān),即可得到定點.【詳解】由指數(shù)函數(shù)的性質(zhì),可得,函數(shù)值與參數(shù)無關(guān),所有過定點.故答案為:【點睛】此題考查函數(shù)的定點問題,關(guān)鍵在于找出自變量的取值使函數(shù)值與參數(shù)無關(guān),熟記常見函數(shù)的定點可以節(jié)省解題時間.16.【解析】
根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)詳見解析;(2).【解析】
(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點建平面直角坐標系,求出平面平與平面的法向量,,最后求得二面角的余弦值為.【詳解】解:(1)連結(jié)∵,且是的中點,∴∵平面平面,平面平面,∴平面.∵平面,∴又為菱形,且為棱的中點,∴∴.又∵,平面∴平面.(2)由題意有,∵四邊形為菱形,且∴分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設(shè),則設(shè)平面的法向量為由,得,令,得取平面的法向量為∴二面角為銳二面角,∴二面角的余弦值為【點睛】處理線面垂直問題時,需要學(xué)生對線面垂直的判定定理特別熟悉,運用幾何語言表示出來方才過關(guān),一定要在已知平面中找兩條相交直線與平面外的直線垂直,才可以證得線面垂直,其次考查了學(xué)生運用空間向量處理空間中的二面角問題,培養(yǎng)了學(xué)生的計算能力和空間想象力.18.(1)p=2;(2)見解析(3)見解析【解析】
(1)取n=1時,由得p=0或2,計算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計算化簡得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計算得到k=1,得到答案.【詳解】(1)n=1時,由得p=0或2,若p=0時,,當n=2時,,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當p=2時,①,則②,②﹣①并化簡得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因為,所以數(shù)列{an}是等比數(shù)列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡得2x﹣2y﹣2=1,顯然x>y﹣2,設(shè)k=x﹣(y﹣2),因為x、y均為整數(shù),所以當k≥2時,2x﹣2y﹣2>1或2x﹣2y﹣2<1,故當k=1,且當x=1,且y﹣2=0時上式成立,即證.【點睛】本題考查了根據(jù)數(shù)列求參數(shù),證明等比數(shù)列,充要條件,意在考查學(xué)生的綜合應(yīng)用能力.19.(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分類討論解絕對值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調(diào)性,得到只需,代入計算得到答案.【詳解】(Ⅰ)當時,不等式為,變形為或或,解集為或.(Ⅱ)當時,,由此可知在單調(diào)遞減,在單調(diào)遞增,當時,同樣得到在單調(diào)遞減,在單調(diào)遞增,所以,存在滿足不等式,只需,即,解得.【點睛】本題考查了解絕對值不等式,不等式存在性問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20.(1)(2)存在;實數(shù)的取值范圍是【解析】
(1)根據(jù)橢圓定義計算,再根據(jù),,的關(guān)系計算即可得出橢圓方程;(2)設(shè)直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關(guān)系求出的中點坐標,求出的中垂線與軸的交點橫,得出關(guān)于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點,使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點.設(shè)直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關(guān)系可得,設(shè)的中點為,,則,,線段的中垂線方程為:,令可得,即.,故,當且僅當即時取等號,,且.的取值范圍是,.【點睛】本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,意在考查學(xué)生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 操作手冊/克朗斯Krones/灌裝機
- 人教版高中語文古詩文背誦與賞析教案
- 運動會上的激烈競賽事件記敘作文14篇范文
- 生物學(xué)遺傳學(xué)與進化論章節(jié)知識練習(xí)
- 學(xué)校食堂食材配送協(xié)議
- 《人教版高中地理教材知識點詳解教學(xué)教案》
- 游客認知對農(nóng)業(yè)文化遺產(chǎn)景觀體驗的影響
- 軟件采購安裝服務(wù)合同
- 文言文教學(xué):古代詩歌的韻律與意境
- 零售業(yè)商品管理流程
- DB37T 1914-2024 液氨存儲與裝卸作業(yè)安全技術(shù)規(guī)范
- NBT 47013.11-2015 承壓設(shè)備無損檢測 第11部分:X射線數(shù)字成像檢測
- 中職2024-2025學(xué)年高一上學(xué)期期末語文試題04(解析版)
- 國家開放大學(xué)本科《理工英語4》一平臺機考第二大題詞匯與結(jié)構(gòu)總題庫
- 2024年廣西桂盛金融信息科技服務(wù)有限公司招聘筆試沖刺題(帶答案解析)
- 浙江省2024年中考數(shù)學(xué)試卷(含答案)
- 國際法(第七版) 課件 第九章 外交和領(lǐng)事關(guān)系法
- 電信營業(yè)廳店面運營方案(2篇)
- 2024年哈爾濱鐵道職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫各版本
- “避風(fēng)港規(guī)則”在視頻分享網(wǎng)站版權(quán)侵權(quán)認定中的適用
- 水表檢定記錄全冊
評論
0/150
提交評論