江蘇省江都大橋初中2021-2022學(xué)年中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第1頁(yè)
江蘇省江都大橋初中2021-2022學(xué)年中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第2頁(yè)
江蘇省江都大橋初中2021-2022學(xué)年中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第3頁(yè)
江蘇省江都大橋初中2021-2022學(xué)年中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第4頁(yè)
江蘇省江都大橋初中2021-2022學(xué)年中考五模數(shù)學(xué)試題含解析及點(diǎn)睛_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.某城市幾條道路的位置關(guān)系如圖所示,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長(zhǎng)度相等,則∠C的度數(shù)為()A.48° B.40° C.30° D.24°2.下列運(yùn)算結(jié)果為正數(shù)的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)3.實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.4.將某不等式組的解集表示在數(shù)軸上,下列表示正確的是()A. B.C. D.5.下列運(yùn)算不正確的是A.a(chǎn)5+C.2a26.如圖,點(diǎn)C是直線AB,DE之間的一點(diǎn),∠ACD=90°,下列條件能使得AB∥DE的是()A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°7.如圖是由若干個(gè)相同的小正方體搭成的一個(gè)幾何體的主視圖和俯視圖,則所需的小正方體的個(gè)數(shù)最少是()A. B. C. D.8.在,0,-1,這四個(gè)數(shù)中,最小的數(shù)是()A. B.0 C. D.-19.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)10.下面的圖形是軸對(duì)稱圖形,又是中心對(duì)稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)11.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t512.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=1,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax1+bx+c=0(a≠0)有一個(gè)根為﹣;⑤拋物線上有兩點(diǎn)P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結(jié)論有()A.1個(gè) B.3個(gè) C.4個(gè) D.5個(gè)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,把一塊含有45°角的直角三角板的兩個(gè)頂點(diǎn)放在直尺的對(duì)邊上.如果∠1=20°,那么∠2的度數(shù)是_____.14.正十二邊形每個(gè)內(nèi)角的度數(shù)為.15.如圖,在平行四邊形ABCD中,E為邊BC上一點(diǎn),AC與DE相交于點(diǎn)F,若CE=2EB,S△AFD=9,則S△EFC等于_____.16.如圖,已知O為△ABC內(nèi)一點(diǎn),點(diǎn)D、E分別在邊AB和AC上,且,DE∥BC,設(shè)、,那么______(用、表示).17.如圖所示,△ABC的頂點(diǎn)是正方形網(wǎng)格的格點(diǎn),則sinA的值為____.18.不透明袋子中裝有個(gè)球,其中有個(gè)紅球、個(gè)綠球和個(gè)黑球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出個(gè)球,則它是黑球的概率是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)規(guī)定:不相交的兩個(gè)函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的“親近距離”(1)求拋物線y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問題:求拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”的過程中,有人提出:過拋物線的頂點(diǎn)向x軸作垂線與直線相交,則該問題的“親近距離”一定是拋物線頂點(diǎn)與交點(diǎn)之間的距離,你同意他的看法嗎?請(qǐng)說明理由.(3)若拋物線y=x2﹣2x+3與拋物線y=+c的“親近距離”為,求c的值.20.(6分)某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為90元的新商品,在商場(chǎng)試銷時(shí)發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系.求出y與x之間的函數(shù)關(guān)系式;寫出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式,并求出售價(jià)定為多少時(shí),每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?21.(6分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點(diǎn),BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.22.(8分)我市某中學(xué)決定在八年級(jí)陽(yáng)光體育“大課間”活動(dòng)中開設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?(2)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;(3)若調(diào)查到喜歡“立定跳遠(yuǎn)”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.23.(8分)如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.(1)在方格紙中畫出以AB為斜邊的等腰直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上;(2)在方格紙中畫出以CD為對(duì)角線的矩形CMDN(頂點(diǎn)字母按逆時(shí)針順序),且面積為10,點(diǎn)M、N均在小正方形的頂點(diǎn)上;(3)連接ME,并直接寫出EM的長(zhǎng).24.(10分)先化簡(jiǎn),再求代數(shù)式()÷的值,其中a=2sin45°+tan45°.25.(10分)已知:如圖,在△ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點(diǎn)D,E為的中點(diǎn).求證:∠ACD=∠DEC;(2)延長(zhǎng)DE、CB交于點(diǎn)P,若PB=BO,DE=2,求PE的長(zhǎng)26.(12分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)?的圖象.(1)若點(diǎn)A的坐標(biāo)為(1,0).①求拋物線l的表達(dá)式,并直接寫出當(dāng)x為何值時(shí),函數(shù)?的值y隨x的增大而增大;②如圖2,若過A點(diǎn)的直線交函數(shù)?的圖象于另外兩點(diǎn)P,Q,且S△ABQ=2S△ABP,求點(diǎn)P的坐標(biāo);(2)當(dāng)2<x<3時(shí),若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.27.(12分)甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人間的距離y(米)與甲出發(fā)的時(shí)間x(分)之間的關(guān)系如圖中折線OA-AB-BC-CD所示.(1)求線段AB的表達(dá)式,并寫出自變量x的取值范圍;(2)求乙的步行速度;(3)求乙比甲早幾分鐘到達(dá)終點(diǎn)?

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=∠1=×48°=24°.故選D.點(diǎn)睛:本題考查了等腰三角形的性質(zhì),平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ);兩直線平行,內(nèi)錯(cuò)角相等.2、B【解析】

分別根據(jù)有理數(shù)的加、減、乘、除運(yùn)算法則計(jì)算可得.【詳解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,結(jié)果為負(fù)數(shù);B、1﹣(﹣2)=1+2=3,結(jié)果為正數(shù);C、1×(﹣2)=﹣1×2=﹣2,結(jié)果為負(fù)數(shù);D、1÷(﹣2)=﹣1÷2=﹣,結(jié)果為負(fù)數(shù);故選B.【點(diǎn)睛】本題主要考查有理數(shù)的混合運(yùn)算,熟練掌握有理數(shù)的四則運(yùn)算法則是解題的關(guān)鍵.3、D【解析】

根據(jù)數(shù)軸上點(diǎn)的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.4、B【解析】分析:本題可根據(jù)數(shù)軸的性質(zhì)畫出數(shù)軸:實(shí)心圓點(diǎn)包括該點(diǎn)用“≥”,“≤”表示,空心圓點(diǎn)不包括該點(diǎn)用“<”,“>”表示,大于向右小于向左.點(diǎn)睛:不等式組的解集為?1?x<3在數(shù)軸表示?1和3以及兩者之間的部分:故選B.點(diǎn)睛:本題考查在數(shù)軸上表示不等式解集:把每個(gè)不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.5、B【解析】(-2a6、B【解析】

延長(zhǎng)AC交DE于點(diǎn)F,根據(jù)所給條件如果能推出∠α=∠1,則能使得AB∥DE,否則不能使得AB∥DE;【詳解】延長(zhǎng)AC交DE于點(diǎn)F.A.∵∠α+∠β=180°,∠β=∠1+90°,∴∠α=90°-∠1,即∠α≠∠1,∴不能使得AB∥DE;B.∵∠β﹣∠α=90°,∠β=∠1+90°,∴∠α=∠1,∴能使得AB∥DE;C.∵∠β=3∠α,∠β=∠1+90°,∴3∠α=90°+∠1,即∠α≠∠1,∴不能使得AB∥DE;D.∵∠α+∠β=90°,∠β=∠1+90°,∴∠α=-∠1,即∠α≠∠1,∴不能使得AB∥DE;故選B.【點(diǎn)睛】本題考查了平行線的判定方法:①兩同位角相等,兩直線平行;

②內(nèi)錯(cuò)角相等,兩直線平行;③同旁內(nèi)角互補(bǔ),兩直線平行;④平行于同一直線的兩條直線互相平行;同一平面內(nèi),垂直于同一直線的兩條直線互相平行.7、B【解析】

主視圖、俯視圖是分別從物體正面、上面看,所得到的圖形.【詳解】綜合主視圖和俯視圖,底層最少有個(gè)小立方體,第二層最少有個(gè)小立方體,因此搭成這個(gè)幾何體的小正方體的個(gè)數(shù)最少是個(gè).故選:B.【點(diǎn)睛】此題考查由三視圖判斷幾何體,解題關(guān)鍵在于識(shí)別圖形8、D【解析】試題分析:因?yàn)樨?fù)數(shù)小于0,正數(shù)大于0,正數(shù)大于負(fù)數(shù),所以在,0,-1,這四個(gè)數(shù)中,最小的數(shù)是-1,故選D.考點(diǎn):正負(fù)數(shù)的大小比較.9、D【解析】

試題分析:方法一:∵△ABO和△A′B′O關(guān)于原點(diǎn)位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點(diǎn)A(―3,6)且相似比為,∴點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是(―3×,6×),∴A′(-1,2).∵點(diǎn)A′′和點(diǎn)A′(-1,2)關(guān)于原點(diǎn)O對(duì)稱,∴A′′(1,―2).故答案選D.考點(diǎn):位似變換.10、B【解析】

根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的定義對(duì)各個(gè)圖形進(jìn)行逐一分析即可.【詳解】解:第一個(gè)圖形是軸對(duì)稱圖形,但不是中心對(duì)稱圖形;第二個(gè)圖形是中心對(duì)稱圖形,但不是軸對(duì)稱圖形;第三個(gè)圖形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形;第四個(gè)圖形即是軸對(duì)稱圖形,又是中心對(duì)稱圖形;∴既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的有兩個(gè),故選:B.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180°后兩部分重合.11、D【解析】選項(xiàng)A,根據(jù)同底數(shù)冪的乘法可得原式=t10;選項(xiàng)B,不是同類項(xiàng),不能合并;選項(xiàng)C,根據(jù)同底數(shù)冪的乘法可得原式=t7;選項(xiàng)D,根據(jù)同底數(shù)冪的乘法可得原式=t5,四個(gè)選項(xiàng)中只有選項(xiàng)D正確,故選D.12、D【解析】

根據(jù)拋物線的圖象與系數(shù)的關(guān)系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點(diǎn)可知:c<0,由拋物線的對(duì)稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對(duì)稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當(dāng)x=﹣c時(shí),y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設(shè)關(guān)于x的方程ax1+bx+c=0(a≠0)有一個(gè)根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點(diǎn)分布在對(duì)稱軸的兩側(cè),∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對(duì)稱軸的距離小于x1到對(duì)稱軸的距離,∴y1>y1,故⑤正確.故選D.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax1+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.本題屬于中等題型.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、25°.【解析】∵直尺的對(duì)邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.14、【解析】

首先求得每個(gè)外角的度數(shù),然后根據(jù)外角與相鄰的內(nèi)角互為鄰補(bǔ)角即可求解.【詳解】試題分析:正十二邊形的每個(gè)外角的度數(shù)是:=30°,則每一個(gè)內(nèi)角的度數(shù)是:180°﹣30°=150°.故答案為150°.15、1【解析】

由于四邊形ABCD是平行四邊形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它們的相似比為3:2,最后利用相似三角形的性質(zhì)即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它們的相似比為3:2,∴S△AFD:S△EFC=()2,而S△AFD=9,∴S△EFC=1.故答案為1.【點(diǎn)睛】此題主要考查了相似三角形的判定與性質(zhì),解題首先利用平行四邊形的構(gòu)造相似三角形的相似條件,然后利用其性質(zhì)即可求解.16、【解析】

根據(jù),DE∥BC,結(jié)合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是平面向量,解題的關(guān)鍵是熟練的掌握平面向量.17、.【解析】

解:連接CE,∵根據(jù)圖形可知DC=1,AD=3,AC=,BE=CE=,∠EBC=∠ECB=45°,∴CE⊥AB,∴sinA=,故答案為.考點(diǎn):勾股定理;三角形的面積;銳角三角函數(shù)的定義.18、【解析】

一般方法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個(gè)球,其中有2個(gè)紅球、2個(gè)綠球和3個(gè)黑球,∴從袋子中隨機(jī)取出1個(gè)球,則它是黑球的概率是:故答案為:.【點(diǎn)睛】本題主要考查概率的求法與運(yùn)用,解決本題的關(guān)鍵是要熟練掌握概率的定義和求概率的公式.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)2;(2)不同意他的看法,理由詳見解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點(diǎn)式得到拋物線上的點(diǎn)到x軸的最短距離,然后根據(jù)題意解決問題;(2)如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”,然后對(duì)他的看法進(jìn)行判斷;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線y=x2﹣2x+3與拋物線的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線上的點(diǎn)到x軸的最短距離為2,∴拋物線y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時(shí),PQ有最小值,最小值為,∴拋物線y=x2﹣2x+3與直線y=x﹣1的“親近距離”為,而過拋物線的頂點(diǎn)向x軸作垂線與直線相交,拋物線頂點(diǎn)與交點(diǎn)之間的距離為2,∴不同意他的看法;(3)M點(diǎn)為拋物線y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時(shí),MN有最小值,最小值為﹣c,∴拋物線y=x2﹣2x+3與拋物線的“親近距離”為﹣c,∴,∴c=1.【點(diǎn)睛】本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.20、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售價(jià)定為130元時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)是2元.【解析】

(1)先利用待定系數(shù)法求一次函數(shù)解析式;(2)用每件的利潤(rùn)乘以銷售量得到每天的利潤(rùn)W,即W=(x﹣90)(﹣x+170),然后根據(jù)二次函數(shù)的性質(zhì)解決問題.【詳解】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b,根據(jù)題意得:,解得:,∴y與x之間的函數(shù)關(guān)系式為y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴當(dāng)x=130時(shí),W有最大值2.答:售價(jià)定為130元時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)是2元.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用:利用二次函數(shù)解決利潤(rùn)問題,先利用利潤(rùn)=每件的利潤(rùn)乘以銷售量構(gòu)建二次函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)求二次函數(shù)的最值,一定要注意自變量x的取值范圍.21、證明見解析【解析】試題分析:由AB=AD,CB=CD結(jié)合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結(jié)合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC結(jié)合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結(jié)合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.試題解析:(1)在△ABC和△ADC中,

∵AB=AD,CB=CD,AC=AC,

∴△ABC≌△ADC,

∴∠BAC=∠DAC,

在△ABF和△ADF中,

∵AB=AD,∠BAC=∠DAC,AF=AF,

∴△ABF≌△ADF,

∴∠AFB=∠AFD.

(2)證明:∵AB∥CD,

∴∠BAC=∠ACD,

∵∠BAC=∠DAC,

∴∠ACD=∠CAD,

∴AD=CD,

∵AB=AD,CB=CD,

∴AB=CB=CD=AD,

∴四邊形ABCD是菱形.22、(1)50名;(2)補(bǔ)圖見解析;(3)剛好抽到同性別學(xué)生的概率是【解析】試題分析:(1)由題意可得本次調(diào)查的學(xué)生共有:15÷30%;(2)先求出C的人數(shù),再求出C的百分比即可;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與剛好抽到同性別學(xué)生的情況,再利用概率公式即可求得答案.試題解析:(1)根據(jù)題意得:15÷30%=50(名).答;在這項(xiàng)調(diào)查中,共調(diào)查了50名學(xué)生;(2)圖如下:(3)用A表示男生,B表示女生,畫圖如下:共有20種情況,同性別學(xué)生的情況是8種,則剛好抽到同性別學(xué)生的概率是.23、(1)畫圖見解析;(2)畫圖見解析;(3).【解析】

(1)直接利用直角三角形的性質(zhì)結(jié)合勾股定理得出符合題意的圖形;(2)根據(jù)矩形的性質(zhì)畫出符合題意的圖形;

(3)根據(jù)題意利用勾股定理得出結(jié)論.【詳解】(1)如圖所示;(2)如圖所示;(3)如圖所示,在直角三角形中,根據(jù)勾股定理得EM=.【點(diǎn)睛】本題考查了勾股定理與作圖,解題的關(guān)鍵是熟練的掌握直角三角形的性質(zhì)與勾股定理.24、,.【解析】

先把小括號(hào)內(nèi)的通分,按照分式的減法和分式除法法則進(jìn)行化簡(jiǎn),再把字母的值代入運(yùn)算即可.【詳解】解:原式當(dāng)時(shí)原式【點(diǎn)睛】考查分式的混合運(yùn)算,掌握運(yùn)算順序是解題的關(guān)鍵.25、(1)見解析;(2)PE=4.【解析】

(1)根據(jù)同角的余角相等得到∠ACD=∠B,然后由圓周角定理可得結(jié)論;(2)連結(jié)OE,根據(jù)圓周角定理和等腰三角形的性質(zhì)證明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.【詳解】解:(1)證明:∵BC是⊙O的直徑,∴∠BDC=90°,∴∠BCD+∠B=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACD=∠B,∵∠DEC=∠B,∴∠ACD=∠DEC(2)證明:連結(jié)OE∵E為BD弧的中點(diǎn).∴∠DCE=∠BCE∵OC=OE∴∠BCE=∠OEC∴∠DCE=∠OEC∴OE∥CD∴△POE∽△PCD,∴∵PB=BO,DE=2∴PB=BO=OC∴∴∴PE=4【點(diǎn)睛】本題是圓的綜合題,主要考查了圓周角定理、等腰三角形的判定和性質(zhì)、相似三角形的判定與性質(zhì),熟練掌握?qǐng)A的相關(guān)知識(shí)和相似三角形的性質(zhì)是解題的關(guān)鍵.26、(1)①當(dāng)1<x<3或x>5時(shí),函數(shù)?的值y隨x的增大而增大,②P(,);(2)當(dāng)3≤h≤4或h≤0時(shí),函數(shù)f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數(shù)法求拋物線的解析式,由對(duì)稱性求點(diǎn)B的坐標(biāo),根據(jù)圖象寫出函數(shù)?的值y隨x的增大而增大(即呈上升趨勢(shì))的x的取值;②如圖2,作輔助線,構(gòu)建對(duì)稱點(diǎn)F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設(shè)AD=a,根據(jù)QE=2FD列方程可求得a的值,并計(jì)算P的坐標(biāo);(2)先令y=0求拋物線與x軸的兩個(gè)交點(diǎn)坐標(biāo),根據(jù)圖象中呈上升趨勢(shì)的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點(diǎn)A在點(diǎn)B的左側(cè),∴h>0,∴h=3,∴拋物線l的表達(dá)式為:y=(x﹣3)2﹣2,∴拋物線的對(duì)稱軸是:直線x=3,由對(duì)稱性得:B(5,0),由圖象可知:當(dāng)1<x<3或x>5時(shí),函數(shù)?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點(diǎn)D,延長(zhǎng)PD交拋物線l于點(diǎn)F,作QE⊥x軸于E,則PD∥QE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論