版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.把函數(shù)圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.2.有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.43.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.4.已知等差數(shù)列的前n項和為,且,則()A.4 B.8 C.16 D.25.設i是虛數(shù)單位,若復數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.36.設,則,則()A. B. C. D.7.拋擲一枚質地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.8.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.9.函數(shù)y=sin2x的圖象可能是A. B.C. D.10.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.11.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.12.已知集合,,則()A. B.C.或 D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求直線和曲線的普通方程;(2)設為曲線上的動點,求點到直線距離的最小值及此時點的坐標.14.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養(yǎng)了此種盆栽植物10株,設為其中成活的株數(shù),若的方差,,則________.15.已知隨機變量服從正態(tài)分布,,則__________.16.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點均在球的球面上,則球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機選取了200人進行調查,當不處罰時,有80人會闖紅燈,處罰時,得到如表數(shù)據(jù):處罰金額(單位:元)5101520會闖紅燈的人數(shù)50402010若用表中數(shù)據(jù)所得頻率代替概率.(1)當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其他市民.現(xiàn)對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?18.(12分)為了實現(xiàn)中華民族偉大復興之夢,把我國建設成為富強民主文明和諧美麗的社會主義現(xiàn)代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風”,某大型現(xiàn)代化農場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產量,積極開展技術創(chuàng)新活動.該農場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產量的區(qū)別,該農場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產量數(shù)據(jù)信息如下圖:(1)如果你是該農場的負責人,在只考慮畝產量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設備的每年成本為0.2千元/畝.已知該農場共有大棚100間(每間1畝),農場種植的該蔬菜每年產出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農場根據(jù)以往該蔬菜的種植經驗,認為一間大棚畝產量超過5.25千斤為增產明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產明顯的大棚間數(shù)為,求的分布列及期望.19.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.20.(12分)在等比數(shù)列中,已知,.設數(shù)列的前n項和為,且,(,).(1)求數(shù)列的通項公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.21.(12分)選修4-4:坐標系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程是.(1)寫出的極坐標方程和的直角坐標方程;(2)已知點、的極坐標分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.22.(10分)設首項為1的正項數(shù)列{an}的前n項和為Sn,數(shù)列的前n項和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
試題分析:把函數(shù)圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質.2、A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點睛】本小題主要考查正方體有關計算,屬于基礎題.3、C【解析】
根據(jù)等差數(shù)列的性質設出,,,利用勾股定理列方程,結合橢圓的定義,求得.再利用勾股定理建立的關系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設,,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質,屬于中檔題.4、A【解析】
利用等差的求和公式和等差數(shù)列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質,考查基本量的計算,難度容易.5、A【解析】
根據(jù)復數(shù)除法運算化簡,結合純虛數(shù)定義即可求得m的值.【詳解】由復數(shù)的除法運算化簡可得,因為是純虛數(shù),所以,∴,故選:A.【點睛】本題考查了復數(shù)的概念和除法運算,屬于基礎題.6、A【解析】
根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.【點睛】本題考查換底公式和對數(shù)的運算,屬于中檔題.7、A【解析】
首先求出樣本空間樣本點為個,再利用分類計數(shù)原理求出三個正面向上為連續(xù)的3個“1”的樣本點個數(shù),再求出重復數(shù)量,可得事件的樣本點數(shù),根據(jù)古典概型的概率計算公式即可求解.【詳解】樣本空間樣本點為個,具體分析如下:記正面向上為1,反面向上為0,三個正面向上為連續(xù)的3個“1”,有以下3種位置1____,__1__,____1.剩下2個空位可是0或1,這三種排列的所有可能分別都是,但合并計算時會有重復,重復數(shù)量為,事件的樣本點數(shù)為:個.故不同的樣本點數(shù)為8個,.故選:A【點睛】本題考查了分類計數(shù)原理與分步計數(shù)原理,古典概型的概率計算公式,屬于基礎題8、C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.9、D【解析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數(shù),排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復.10、B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.11、A【解析】
求導得到,根據(jù)切線方程得到,故,設,求導得到函數(shù)在上單調遞減,在上單調遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數(shù)在上單調遞減,在上單調遞增,故.故選:.【點睛】本題考查函數(shù)的切線問題,利用導數(shù)求最值,意在考查學生的計算能力和綜合應用能力.12、D【解析】
首先求出集合,再根據(jù)補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、(1),;(2),.【解析】
(1)利用代入消參的方法即可將兩個參數(shù)方程轉化為普通方程;(2)利用參數(shù)方程,結合點到直線的距離公式,將問題轉化為求解二次函數(shù)最值的問題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數(shù)方程中,,所以曲線的普通方程為.(2)設點.點到直線的距離.當時,,所以點到直線的距離的最小值為.此時點的坐標為.【點睛】本題考查將參數(shù)方程轉化為普通方程,以及利用參數(shù)方程求距離的最值問題,屬中檔題.14、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.15、0.22.【解析】
正態(tài)曲線關于x=μ對稱,根據(jù)對稱性以及概率和為1求解即可。【詳解】【點睛】本題考查正態(tài)分布曲線的特點及曲線所表示的意義,是一個基礎題.16、【解析】
做中點,的中點,連接,由已知條件可求出,運用余弦定理可求,從而在平面中建立坐標系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標系的坐標可求,通過球心滿足,即可求出的坐標,從而可求球的半徑,進而能求出球的表面積.【詳解】解:如圖做中點,的中點,連接,由題意知,則設的外接圓圓心為,則在直線上且設長方形的外接圓圓心為,則在上且.設外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標原點,以所在直線為軸,以過點垂直于軸的直線為軸,如圖建立坐標系,由題意知,在平面中且設,則,因為,所以解得.則所以球的表面積為.故答案為:.【點睛】本題考查了幾何體外接球的問題,考查了球的表面積.關于幾何體的外接球的做題思路有:一是通過將幾何體補充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設半徑列方程求解;三是通過空間、平面坐標系進行求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)降低(2)【解析】
(1)計算出罰金定為10元時行人闖紅燈的概率,和不進行處罰時行人闖紅燈的概率,求解即可;(2)闖紅燈的市民有80人,其中類市民和類市民各有40人,根據(jù)分層抽樣法抽出4人依次排序,計算所求的概率值.【詳解】解:(1)當罰金定為10元時,行人闖紅燈的概率為;不進行處罰,行人闖紅燈的概率為;所以當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低;(2)由題可知,闖紅燈的市民有80人,類市民和類市民各有40人故分別從類市民和類市民各抽出兩人,4人依次排序記類市民中抽取的兩人對應的編號為,類市民中抽取的兩人編號為則4人依次排序分別為,,,,,,,,,,,,共有種前兩位均為類市民排序為,,有種,所以前兩位均為類市民的概率是.【點睛】本題主要考查了計算古典概型的概率,屬于中檔題.18、(1)見解析;(2)(i)該農場若采用延長光照時間的方法,預計每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預計每年的利潤為424千元;(3)分布列見解析,.【解析】
(1)估計第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來選擇.(2)對于兩種方法,先計算出每畝平均產量,再算農場一年的利潤.(3)估計頻率分布直方圖可知,增產明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,再算出相應的概率,寫出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為千斤/畝,第二組數(shù)據(jù)平均數(shù)為千斤/畝,可知第一組方法較好,所以采用延長光照時間的方法;((2)(i)對于采用延長光照時間的方法:每畝平均產量為千斤.∴該農場一年的利潤為千元.(ii)對于采用降低夜間溫度的方法:每畝平均產量為千斤,∴該農場一年的利潤為千元.因此,該農場若采用延長光照時間的方法,預計每年的利潤為426千元;若采用降低夜間溫度的方法,預計每年的利潤為424千元.(3)由圖可知,增產明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點睛】本題主要考查樣本估計總體和離散型隨機變量的分布列,還考查了數(shù)據(jù)處理和運算求解的能力,屬于中檔題.19、(1)證明見解析;(2)【解析】
(1)由已知可證,即可證明結論;(2)根據(jù)已知可證平面,建立空間直角坐標系,求出坐標,進而求出平面和平面的法向量坐標,由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點,∴,∵平面且,∴平面,以為原點,分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,∴設平面的法向量為,則,∴,取,則.設平面的法向量為,則,∴,取,則.∴,設二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點,因為四邊形為平行四邊形,所以為中點,又因為四邊形為菱形,所以為中點,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學運算的數(shù)學核心素養(yǎng),屬于中檔題.20、(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項公式為,滿足題設【解析】
(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結果為常數(shù),即得證;(3)由(2)可得數(shù)列的通項公式,,設出等差數(shù)列,再根據(jù)不等關系來算出的首項和公差即可.【詳解】(1)設等比數(shù)列的公比為q,因為,,所以,解得.所以數(shù)列的通項公式為:.(2)由(1)得,當,時,可得①,②②①得,,則有,即,,.因為,由①得,,所以,所以,.所以數(shù)列是以為首項,1為公差的等差數(shù)列.(3)由(2)得,所以,.假設存在等差數(shù)列,其通項,使得對任意,都有,即對任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當,時,,這與矛盾.(ii)若,則當,時,.而,,所以.故,這與矛盾.所以.其次證明:當時,.因為,所以在上單調遞增,所以,當時,.所以當,時,.再次證明.(iii)若時,則當,,,,這與③矛盾.(iv)若時,同(i)可得矛盾.所以.當時,因為,,所以對任意,都有.所以,.綜上,存在唯一的等差數(shù)列,其通項公式為,滿足題設.【點睛】本題考查求等比數(shù)列通項公式,證明等差數(shù)列,以及數(shù)列中的探索性問題,是一道數(shù)列綜合題,考查學生的分析,推理能力.21、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國發(fā)動機曲軸行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實施研究報告
- 2025-2030年中國鉭電容器行業(yè)并購重組擴張戰(zhàn)略制定與實施研究報告
- 高效會議管理培訓課件
- 消防水炮知識培訓課件
- 煤氣安全知識培訓課件
- 2024中國采礦、采石設備制造市場前景及投資研究報告
- 廣西賀州市八步區(qū)2023-2024學年九年級上學期期末化學試題
- 炭疽防控知識培訓課件下載
- 電磁學知識培訓課件
- 市引申蒙氏教學幼兒園工作參考計劃
- 建筑公司員工合規(guī)手冊
- 質量保證的基本原則與方法
- 第1講-句子結構
- 鼻腔沖洗護理技術團體標準解讀
- 《流感科普宣教》課件
- 紅領巾知識伴我成長課件
- 廚邦醬油推廣方案
- 腦血管病的三級預防
- 保險產品創(chuàng)新與市場定位培訓課件
- 2022-2023學年山東省淄博四中高二(上)期末數(shù)學試卷含答案
- 《建筑賦比興》一些筆記和摘錄(上)
評論
0/150
提交評論