安徽省渦陽縣第一中學(xué)2022年高一上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第1頁
安徽省渦陽縣第一中學(xué)2022年高一上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第2頁
安徽省渦陽縣第一中學(xué)2022年高一上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第3頁
安徽省渦陽縣第一中學(xué)2022年高一上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第4頁
安徽省渦陽縣第一中學(xué)2022年高一上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列關(guān)系式中,正確的是A. B.C. D.2.在平面直角坐標(biāo)系中,直線的斜率是()A. B.C. D.3.函數(shù)的最大值為()A. B.C.2 D.34.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+2x+b(b為常數(shù)),則f(-1)=()A.3 B.1C.-1 D.-35.?dāng)?shù)學(xué)可以刻畫現(xiàn)實世界中的和諧美,人體結(jié)構(gòu)、建筑物、國旗、繪畫、優(yōu)選法等美的共性與黃金分割相關(guān).黃金分割常數(shù)也可以表示成,則()A. B.C. D.6.已知,,則直線與直線的位置關(guān)系是()A.平行 B.相交或異面C.異面 D.平行或異面7.,,,則的大小關(guān)系為()A. B.C. D.8.設(shè)分別是x軸和圓:(x-2)2+(y-3)2=1上的動點(diǎn),且點(diǎn)A(0,3),則的最小值為()A. B.C. D.9.已知,,且,,,那么的最大值為()A. B.C.1 D.210.使冪函數(shù)為偶函數(shù),且在上是減函數(shù)的值為()A. B.C. D.2二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,,,則與夾角的余弦值為______12.函數(shù)的圖像與直線y=a在(0,)上有三個交點(diǎn),其橫坐標(biāo)分別為,,,則的取值范圍為_______.13.已知函數(shù),,若對任意的,都存在,使得,則實數(shù)的取值范圍為_________.14.記函數(shù)的值域為,在區(qū)間上隨機(jī)取一個數(shù),則的概率等于__________15.已知是半徑為,圓角為扇形,是扇形弧上的動點(diǎn),是扇形的接矩形,則的最大值為________.16.函數(shù)在上的最小值是__________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某工廠利用輻射對食品進(jìn)行滅菌消毒,先準(zhǔn)備在該廠附近建一職工宿舍,并對宿舍進(jìn)行防輻射處理,防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費(fèi)用p(萬元)和宿舍與工廠的距離x(km)的關(guān)系式為p=k4x+5(0≤x≤15),若距離為10km時,測算宿舍建造費(fèi)用為20萬元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購置修路設(shè)備需10萬元,鋪設(shè)路面每千米成本為4萬元.設(shè)(1)求fx(2)宿舍應(yīng)建在離工廠多遠(yuǎn)處,可使總費(fèi)用最小,并求fx18.已知函數(shù)(且).(1)若函數(shù)的定義域為,求實數(shù)的取值范圍;(2)函數(shù)的定義域為,且滿足如下條件:存在,使得在上的值域為,那么就稱函數(shù)為“二倍函數(shù)”.若函數(shù)是“二倍函數(shù)”,求實數(shù)的取值范圍.19.在下列三個條件中任選一個,補(bǔ)充在下面的問題中,并作答①的最小正周期為,且是偶函數(shù):②圖象上相鄰兩個最高點(diǎn)之間的距離為,且;③直線與直線是圖象上相鄰的兩條對稱軸,且問題:已知函數(shù),若(1)求,的值;(請先在答題卡上寫出所選序號再做答)(2)將函數(shù)的圖象向右平移個單位長度后,再將得到的函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求在上的最小值和最大值20.(1)已知,求的值;(2)已知,,且,求的值21.已知函數(shù),(1)若,求函數(shù)的值域;(2)已知,且對任意的,不等式恒成立,求的取值范圍

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】不含任何元素的集合稱為空集,即為,而代表由單元素0組成的集合,所以,而與的關(guān)系應(yīng)該是.故選C.2、A【解析】將直線轉(zhuǎn)化成斜截式方程,即得得出斜率.【詳解】解:由題得,原式可化為,斜率.故選:A.3、B【解析】先利用,得;再用換元法結(jié)合二次函數(shù)求函數(shù)最值.【詳解】,,當(dāng)時取最大值,.故選:B【點(diǎn)睛】易錯點(diǎn)點(diǎn)睛:注意的限制條件.4、D【解析】∵f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x+2x+b(b為常數(shù)),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=3∴f(-1)=-f(1)=-3故選D5、A【解析】利用同角三角函數(shù)平方關(guān)系,誘導(dǎo)公式,二倍角公式進(jìn)行求解.【詳解】故選:A6、D【解析】由直線平面,直線在平面內(nèi),知,或與異面【詳解】解:直線平面,直線在平面內(nèi),,或與異面,故選:D【點(diǎn)睛】本題考查平面的基本性質(zhì)及其推論,解題時要認(rèn)真審題,仔細(xì)解答7、D【解析】根據(jù)對數(shù)函數(shù)的單調(diào)性得到,根據(jù)指數(shù)函數(shù)的單調(diào)性得到,根據(jù)正弦函數(shù)的單調(diào)性得到.【詳解】易知,,因,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,所以,所以.故選:D.8、B【解析】取點(diǎn)A關(guān)于x軸的對稱點(diǎn)C(0,-3),得到,最小值為.故答案為B.點(diǎn)睛:這個題目考查的是直線和圓的位置關(guān)系,一般直線和圓的題很多情況下是利用數(shù)形結(jié)合來解決的,聯(lián)立的時候較少;再者在求圓上的點(diǎn)到直線或者定點(diǎn)的距離時,一般是轉(zhuǎn)化為圓心到直線或者圓心到定點(diǎn)的距離,再加減半徑,分別得到最大值和最小值9、C【解析】根據(jù)題意,由基本不等式的性質(zhì)可得,即可得答案.【詳解】根據(jù)題意,,,,則,當(dāng)且僅當(dāng)時等號成立,即的最大值為1.故選:10、B【解析】根據(jù)冪函數(shù)的性質(zhì)確定正確選項.【詳解】A選項,是奇函數(shù),不符合題意.B選項,為偶函數(shù),且在上是減函數(shù),符合題意.C選項,是非奇非偶函數(shù),不符合題意.D選項,,在上遞增,不符合題意.故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】運(yùn)用平面向量的夾角公式可解決此問題.【詳解】根據(jù)題意得,,,,故答案為.【點(diǎn)睛】本題考查平面向量夾角公式的簡單應(yīng)用.平面向量數(shù)量積公式有兩種形式,一是,二是,主要應(yīng)用以下幾個方面:(1)求向量的夾角,(此時往往用坐標(biāo)形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).12、【解析】由x∈(0,)求出,然后,畫出正弦函數(shù)的大致圖像,利用圖像求解即可【詳解】由題意因為x∈(0,),則,可畫出函數(shù)大致的圖則由圖可知當(dāng)時,方程有三個根,由解得,解得,且點(diǎn)與點(diǎn)關(guān)于直線對稱,所以,點(diǎn)與點(diǎn)關(guān)于直線對稱,故由圖得,令,當(dāng)為x∈(0,)時,解得或,所以,,,解得,,則,即.故答案為:【點(diǎn)睛】關(guān)鍵點(diǎn)睛:解題關(guān)鍵在于利用x∈(0,),則畫出圖像,并利用對稱性求出答案13、##a≤【解析】時,,原問題.【詳解】∵,,∴,∴,即對任意的,都存在,使恒成立,∴有.當(dāng)時,顯然不等式恒成立;當(dāng)時,,解得;當(dāng)時,,此時不成立.綜上,.故答案為:.14、【解析】因為;所以的概率等于點(diǎn)睛:(1)當(dāng)試驗的結(jié)果構(gòu)成的區(qū)域為長度、面積、體積等時,應(yīng)考慮使用幾何概型求解(2)利用幾何概型求概率時,關(guān)鍵是試驗的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域(3)幾何概型有兩個特點(diǎn):一是無限性,二是等可能性.基本事件可以抽象為點(diǎn),盡管這些點(diǎn)是無限的,但它們所占據(jù)的區(qū)域都是有限的,因此可用“比例解法”求解幾何概型的概率15、【解析】設(shè),用表示出的長度,進(jìn)而用三角函數(shù)表示出,結(jié)合輔助角公式即可求得最大值.【詳解】設(shè)扇形的半徑為,是扇形的接矩形則,所以則所以因為,所以所以當(dāng)時,取得最大值故答案為:【點(diǎn)睛】本題考查了三角函數(shù)的應(yīng)用,將邊長轉(zhuǎn)化為三角函數(shù)式,結(jié)合輔助角公式求得最值是常用方法,屬于中檔題.16、【解析】在上單調(diào)遞增最小值為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)fx=9004x+5【解析】(1)根據(jù)距離為10km時,測算宿舍建造費(fèi)用為20萬元,可求k的值,由此,可得f(x)的表達(dá)式;(2)fx【詳解】解:(1)由題意可知,距離為10km時,測算宿舍建造費(fèi)用為20萬元,則20=k4×10+5,解得k(2)因為fx=9004x+5答:宿舍應(yīng)建在離工廠254km處,可使總費(fèi)用最小,f【點(diǎn)睛】利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方18、(1)(2)【解析】(1)由題意可知,對任意的,恒成立,利用參變量分離法結(jié)合指數(shù)函數(shù)的值域可求得實數(shù)的取值范圍;(2)分析可知在定義域內(nèi)單調(diào)遞增,由“二倍函數(shù)”的定義可知關(guān)于的二次方程有兩個不等的正根,可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【小問1詳解】解:的定義域為,所以,恒成立,則恒成立,,,因此,實數(shù)的取值范圍為.小問2詳解】解:當(dāng)時,因為內(nèi)層函數(shù)為增函數(shù),外層函數(shù)為增函數(shù),故函數(shù)在定義域內(nèi)單調(diào)遞增,當(dāng)時,因為內(nèi)層函數(shù)為減函數(shù),外層函數(shù)為減函數(shù),故函數(shù)在定義域內(nèi)單調(diào)遞增,若函數(shù)是“二倍函數(shù)”,則需滿足,即,所以,、是關(guān)于的方程的兩根,設(shè),則關(guān)于的方程有兩個不等的正根,所以,,解得,因此,實數(shù)的取值范圍是.19、(1),(2)最小值為1,最大值為2【解析】(1)根據(jù)①②③所給的條件,以及正余弦函數(shù)的對稱性和周期性之間的關(guān)系即可求解;(2)根據(jù)函數(shù)的伸縮平移變換后的特點(diǎn)寫出的解析式即可.【小問1詳解】選條件①:∵的最小正周期為,∴,∴;又是偶函數(shù),∴對恒成立,得對恒成立,∴,∴(),又,∴;選條件②:∵函數(shù)圖象上相鄰兩個最高點(diǎn)之間的距離為,∴,;又,∴,即,∴(),又,∴;選條件③:∵直線與直線是圖象上相鄰的兩條對稱軸,∴,即.∴;又,∴,∴(),又,∴;【小問2詳解】由(1)無論選擇①②③均有,,即,將圖象向右平移個單位長度后,得到的圖象,將的圖象上所有點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到的圖象,∵,∴∴在上單調(diào)遞增;在上單調(diào)遞減又∵,,∴在的最小值為1,最大值為2;綜上:,最小值=1,最大值=2.20、(1)(2),【解析】(1)先求得,然后對除以,再分子分母同時除以,將表達(dá)式變?yōu)橹缓男问?,代入的值,從而求得表達(dá)式的值.(2)利用誘導(dǎo)公式化簡已知條件,平方相加后求得的值,進(jìn)而求得的值,接著求得的值,由此求得的大小.【詳解】(1)(2)由已知條件,得,兩式求平方和得,即,所以.又因為,所以,把代入得.考慮到,得.因此有,【點(diǎn)睛】本小題主要考查利用齊次方程來求表達(dá)式的值,考查利用誘導(dǎo)公式和同角三角函數(shù)的基本關(guān)系式化簡求值,考查特殊角的三角函數(shù)值.形如,或者的表達(dá)式,通過分子分母同時除以或者,轉(zhuǎn)化為的形式.21、(1);(2)當(dāng)時,;當(dāng)且時,.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論