![資本資產(chǎn)定價模型CAPM課件_第1頁](http://file4.renrendoc.com/view/057c61d4143d5a51c3d3cacd3ef8f6b9/057c61d4143d5a51c3d3cacd3ef8f6b91.gif)
![資本資產(chǎn)定價模型CAPM課件_第2頁](http://file4.renrendoc.com/view/057c61d4143d5a51c3d3cacd3ef8f6b9/057c61d4143d5a51c3d3cacd3ef8f6b92.gif)
![資本資產(chǎn)定價模型CAPM課件_第3頁](http://file4.renrendoc.com/view/057c61d4143d5a51c3d3cacd3ef8f6b9/057c61d4143d5a51c3d3cacd3ef8f6b93.gif)
![資本資產(chǎn)定價模型CAPM課件_第4頁](http://file4.renrendoc.com/view/057c61d4143d5a51c3d3cacd3ef8f6b9/057c61d4143d5a51c3d3cacd3ef8f6b94.gif)
![資本資產(chǎn)定價模型CAPM課件_第5頁](http://file4.renrendoc.com/view/057c61d4143d5a51c3d3cacd3ef8f6b9/057c61d4143d5a51c3d3cacd3ef8f6b95.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Foundationsof
FinancialAnalysisandInvestmentsLecture3: CapitalAssetPricingModel(CAPM)DrEkaterinaSvetlovaFoundationsof
FinancialAnalToday‘slectureBriefrevision:Lecture2Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateMPTandCAPM:PreliminaryremarksTheCapitalAssetPricingModel(CAPM)FirstconsiderationsaboutthelimitationsofCAPMDrEkaterinaSvetlovaToday‘slectureBriefrevision:TheportfolioconsistsoftworiskyassetsD(debt)andE(equity)TheirweightsintheportfolioareWeconstructriskyportfoliosvaryingtoprovidethelowestpossibleriskforanygivenlevelofexpectedreturnE(rp)=wDE(rD)+wEE(rE)
DrEkaterinaSvetlovaxD
and
xE(xD+xE=1;xD≥0,xE≥0)xD
and
xE Cov(rD,rE)=DEDESuccessofdiversificationdependsonthecorrelationcoefficientBodieetal.2014,Ch.71.Briefrevision:Lecture2
TheportfolioconsistsoftwoDrEkaterinaSvetlovaDebtEquityExpectedreturnE(r)8%13%Standarddeviation12%20%Bodieetal.(2014),Table7.1,p.208Bodieetal.(2014),Table7.3,p.211ABBodieetal.(2014),p.2141.Briefrevision:Lecture2
DrEkaterinaSvetlovaDebtEquitDrEkaterinaSvetlovaDebtEquityExpectedreturnE(r)8%13%Standarddeviation12%20%Bodieetal.(2014),Table7.1,p.208Bodieetal.(2014),Table7.3,p.211WhenρDE=-1,
WhenρDE=0,
1.Briefrevision:Lecture2
DrEkaterinaSvetlovaDebtEquit1.Briefrevision:Lecture2
Source:Bodieetal.2014:p.220DrEkaterinaSvetlova1.Briefrevision:Lecture2
SDrEkaterinaSvetlovaDiversifiable(nonsystematic)riskvsundiversifiable(systematic)risk1.Briefrevision:Lecture2
Bodieetal.(2014),p.207DrEkaterinaSvetlovaDiversifiDrEkaterinaSvetlovaHowdoesdiversificationmatter?DrEkaterinaSvetlovaHowdoesDrEkaterinaSvetlovaSponsorsTrusteesTheInvestmentManagementFirmInvestmentconsultantstheTampafirefightersandpoliceofficerspensionfundCityofTampa,FloridaHaroldJ.BowenIIIHowdoesdiversificationmatter?Asforbeingdiversified,whichisthemantraofnearlyallinstitutionalmoneymanagersandconsultants,[theTampafund]isn’t.…[T]hefund’sassetsareconcentratedinarelativelysmallnumberofstocksandfixed-incomeinvestments.Inshort,theTampapensionfundprettymuchbreaksalltheconventionalrulesoffundmanagement.DrEkaterinaSvetlovaSponsorsT2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlova2.Mean-varianceoptimizatiUnlimitedborrowingandlendingatarisk-freerate:Risklessassetisanassetwithacertainreturnforthegiventimehorizon.Forexample:USTreasurybondsthatautomaticallyadjustforinflation(TIPS:Treasuryinflationprotectedsecurities)orshorttermUSTreasurybills(UST-bills)Standarddeviationofthereturn:σ=0
DrEkaterinaSvetlova2.Mean-varianceoptimizationwithunlimitedborrowingandlending atarisk-freerateUnlimitedborrowingandlendinIfyouinvestinassetHandrisklessasset:xHandxf=1-xHErp=(1-xH)Rf+xHRH=
Rf+xH(ErH-Rf)σp=(1-xH)2σf+xH2σH2+2xH(1-xH)ρfHσfσHAsσf=0,weobtain:σp=xHσH2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004IfyouinvestinassetHandrDrEkaterinaSvetlovaCombiningequationsforportfolioreturnandrisk,weobtain:
ErH-Rf Erp=Rf+ σp
σH2.Mean-varianceoptimizationwithunlimitedborrowingandlending atarisk-freerateSource:Perold2004DrEkaterinaSvetlovaCombining
ErH-Rf
σHTheslope:Sharperatio(ErH-Rf)Riskpremium2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004
Theslope:Sharperatio(ErHSharperatioofassetH:(12%-5%)/40%=0.175Important:allcombinationsofassetHwithrisk-freeborrowingandlendinghavethesameSharperatio:itistheslopeofastraightlineSharperatioofassetM:(10%-5%)/20%=0.252.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004SharperatioofassetH:ImportUseofSharperatioinpractice:ShaperatioisusedtomeasuretheperformanceofaportfolioAdvantage:theriskadjustedperformancemeasurement2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaUseofSharperatioinpracticSharperatioofH<SharperatioofMThecombinationofrisk-freeassetandMdominatesthecombinationofrisk-freeassetandH2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004SharperatioofH<SharperatHowmuchofeachriskyassetshouldoneholdintheportfolio?Sharperatio:0.305(higherthan0.25forMand0.175forH)AllinvestorswillholdassetsMandHinproportions74/26Newefficiencylinewhenrisk-freelending/borrowingisallowed2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004CorrelationbetweenMandHassumedtobezeroHowmuchofeachriskyassetsIncaseofmanyriskyassets:Tobinseparationtheorem:Portfoliochoiceproblemcanbeseparatedintwotasks:IdentifytheoptimalriskyportfolioIdentifythecapitalallocationbetweenriskyandrisklessinvestmentsRiskaversionRiskseeking3.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004Incaseofmanyriskyassets:TUseofTobinseparationinpractice:
2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaUseofTobinseparationinpraCapitalMarketLine(CML)=setofpotentialallocationsbetweenariskyassetandano-riskyasset(oraportfoliothatcontainsonlyriskyassetsandrisk-freeassets)MM–themarketportfolioAllinvestorsholdportfolioM(notdependentoninvestors’toleranceforrisk)
Themarketportfolioistheonewherethesupplyequalsdemand(marketclearing)2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaCapitalMarketLine(CML)=se
3.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlova
3.Mean-varianceoptimizat
ErM-Rf ErP=Rf+ σP
σMMarketpriceofriskTheamountofriskintheportfolioAllrationalinvestorswillholdthesamemarketportfolio(M)ForanyefficientportfolioontheCMLapplies:Generalformula:Expectedreturn=(Priceoftime)+(Priceofrisk)x(Amountofrisk)2.Mean-varianceoptimizationwithunlimitedborrowingandlending atarisk-freerateDrEkaterinaSvetlovaMarketpriceofriskTheamount3.MPTandCAPM:PreliminaryremarksDrEkaterinaSvetlova3.MPTandCAPM:Preliminaryr3.MPTandCAPM:preliminaryremarksPortfoliotheory(normative): givenexpectations(expectedreturns,volatilities,correlations) Howshouldarisk-averseinvestorstructureanefficientportfolio?Howtoachieveanoptimaltrade-offbetweenriskandreturn?(differencesinexpectationscompositionofthetangentialportfolio)TheCapitalAssetPricingModel(positive): underveryrestrictiveassumptionswhatthemarketshouldlooklikeinequilibrium?
CAPMidentifiesaportfoliothatmustbeefficientifassetpricesaretoclearthemarketofallassets(demandforsecurities=supply)
CAPMisanequilibriummodel
DrEkaterinaSvetlova3.MPTandCAPM:preliminaryThemodelgivesusaprecisepredictionoftherelationshipthatweshouldobservebetweentheriskofanassetanditsexpectedreturninequilibriumFunctionsoftheCAPMmodel:Toprovideabenchmarkrateofreturnforevaluatinginvestments(“fair”returngivenarisk)Tomakeaguessfornewsecurities(e.g.,IPOs)Tomeasuretheriskofanindividualsecurity3.MPTandCAPM:preliminaryremarksDrEkaterinaSvetlovaThemodelgivesusaprecisepAllinvestorsaremean-varianceoptimizersandestimatetheirportfoliosaccordingtoE(R)andvariance(allMPTassumptionsapply)AllinvestorshavehomogeneousexpectationsconcerningE(R),VarianceundCovariances(everyinvestorhasthesamerisk-returnexpectationforanygivenstock)identifyefficientfrontierCapitalmarketsareperfect(allassetsareinfinitelydivisable,therearenotransactioncosts,notaxes,allinvestorsarepricetakersandhaveanequalaccesstomarket/informationandinvestmentopportunities)Thereistheunlimitedborrowingandlendingatarisk-freerateofinterestsCAPMassumptions3.MPTandCAPM:preliminaryremarksDrEkaterinaSvetlovaAllinvestorsaremean-varianc4.TheCapitalAssetPricingModel(CAPM)DrEkaterinaSvetlova4.TheCapitalAssetPricingMDrEkaterinaSvetlova4.TheCapitalAssetPricingModel(CAPM)Whatistheriskofanindividualsecurityinthecontextofthebestportfolioyoucanhold?Inotherwords,whatareequilibriumreturnsandrisksofanindividualsecurity?Intuition:Ifweinvestinrisk-freeassetandtheoptimalriskyportfolio,thenouronlysourceofriskisthevarianceofthereturnontheriskyportfolio.Theriskofanindividualsecurityistheamountthatsecuritycontributestothevarianceofthereturnontheoptimalriskyportfolio.Whatistherateofchangeinthemarketportfoliovariancegiventhatwechangetheweightontheithsecurityalittlebit?DrEkaterinaSvetlova4.TheCaAbasicprincipleofequilibriumisthatallinvestmentsshouldofferthesamereward-to-riskratio.Thereward-to-risksratiooftheithsecurityandthemarketportfolioshouldbeequal2.Mean-varianceoptimizationwithunlimitedborrowingandlending atarisk-freerateDrEkaterinaSvetlova
-thecontributionofthesecurityitothevarianceofthemarketportfolioTheCAPMformulaBodieetal.(2014),p.295ffAbasicprincipleofequilibri4.TheCapitalAssetPricingModel(CAPM)
ThebetaofasecuritywithrespecttothemarketportfolioisthemeasureofriskforthatsecurityTheconceptualmeaningofthe“Beta”The“beta”isameasureofthevolatility(systematicrisk)ofasecurityoraportfolioincomparisontothemarketasawholeIfbeta>1,itindicatesthatthesecurity’spricewillbemorevolatilethanthemarketExample:abetaequalsto1.3meansthatthesecurityis30%morevolatilethanthemarketDrEkaterinaSvetlova4.TheCapitalAssetPricingMUseofbetainpractice:BetaasameasureofriskofamutualfundExample:TheBlackRockGlobalSmallCapFund(factsheet)4.TheCapitalAssetPricingModel(CAPM)
DrEkaterinaSvetlovaUseofbetainpractice:4.TheThesecuritymarketlineprovidesabenchmarkfortheevaluationofinvestmentperformanceAssetplotsabovetheSMLofferagreaterexpectedreturnsthanindicatedbytheCAPM(underpricedassets)AssetplotsbelowtheSMLofferalowerexpectedreturnsthanindicatedbytheCAPM(overpricedassets)4.TheCapitalAssetPricingModel(CAPM)
DrEkaterinaSvetlova
ThesecuritymarketlineproviExample:Marketreturnisexpectedtobe14%,thestockbetais1.2,theT-billrateis6%.Theexpectedreturnonthestockis:6+1.2(14–6)=15.6%Ifyouexpect17%returnforthestock,theimpliedalphais1.4%4.TheCapitalAssetPricingModel(CAPM)
DrEkaterinaSvetlova
Example:MarketreturnisexpeImplicationsoftheCAPM:TheexpectedreturnofastockdoesnotdependonitsidiosyncraticriskIntheCAPM,astock’sexpectedreturndoesnotdependonthegrowth rateofitsexpectedfuturecashflowsBetameasurestheriskofanassetthatcannotbediversifiedaway
Overallriskofanasset=SystematicriskCompanyspecificrisk+β4.TheCapitalAssetPricingModel(CAPM)
DrEkaterinaSvetlova
ImplicationsoftheCAPM:Overa
ImplicationsoftheCAPMfordiversificationDiversificationreducesrisksbutdoesnoteliminatethemThetypeofriskthatdiversificationreducesisthecompanyspecific=idiosyncraticrisk=ariskspecifictoeachparticularasset=itisnotcorrelatedacrossassetsWhenweincreaseanumberofassetsinaportfolio,weexpectthatonaveragetheidiosyncraticriskscanceleachotherandthattheactualreturngetsclosertotheexpectedreturn
thereisnoreasontoexpectcompensationforbearingthisriskSystematicriskiscommonacrossassets–youcannotreducethisriskthroughdiversificationSourcesofsystematicrisk:theoveralleconomyorfinancialmarkets
risk-aversinvestorsrequirecompensationforbearingthisriskFullenkamp20124.TheCapitalAssetPricingModel(CAPM)DrEkaterinaSvetlovaImplicationsoftheCAPMforQuickcheck:Arethefollowingtrueorfalse?Explain.Stockswithabetaofzeroofferanexpectedrateofreturnofzero.TheCAPMimpliesthatinvestorsrequireahigherreturntoholdhighlyvolatilesecuritiesYoucanconstructaportfoliowithbetaof0.75byinvesting75%oftheinvestmentbudgetinT-billsandtheremainderinthemarketportfolio.Source:Bodieetal.2014:317DrEkaterinaSvetlova4.TheCapitalAssetPricingModel(CAPM)Quickcheck:Source:BodieetaQuickcheck:Whichofthefollowingfactorsreflectpuremarketriskforagivencorporation?Increasedshort-terminterestrates.FireinthecorporationwarehouseIncreasedinsurancecostsDeathoftheCEOIncreasedlabourcosts.Source:Bodieetal.2014:235DrEkaterinaSvetlova4.TheCapitalAssetPricingModel(CAPM)Quickcheck:Source:BodieetaMainpredictionsoftheCAPMAllinvestorswillalwayscombineariskfreeassetwiththemarketportfoliowillhavethesameportfolioofriskyassets(themarketportfolio)agreeontheexpectedreturnandontheexpectedvarianceofthemarketportfolioandofeveryassetagreeonthemarketriskpremiumandonthebetaofeveryassetagreeonthemarketportfoliobeingontheminimumvariancefrontierandbeingmean-varianceefficientexpectreturnsfromtheirinvestmentsaccordingtothebetasTradingvolumeoffinancialmarketswillbeverysmall
4.TheCapitalAssetPricingModel(CAPM)
DrEkaterinaSvetlovaMainpredictionsoftheCAPM4.5.FirstconsiderationsaboutthelimitationsofCAPMDrEkaterinaSvetlova5.FirstconsiderationsaboutCAPM=equilibriummodel(“snapshot”ofthemarketatonepointintime)Whatis“marketportfolio”?Indices,ernational…RiskpremiumsdependoninvesmentclimateandbusinesscycleWarrenBuffett:“Riskcomesfromnotknowingwhatyou’redoing.” Doesthefundamentalcashflowanalysisreallynotmatter?CAPMhasnotbeenconfirmedempirically(nextlecture)DrEkaterinaSvetlovaCAPM=equilibriummodel(“snaβdoesn‘texplainthevarianceofreturns: Basu(1977):earning-price-ratioeffect Banz(1981):sizeeffect Bhandari(1988):highdebt-equity-ratioeffect Statmanetal.(1980):book-to-market-ratioeffectBenjaminGraham,thelegendaryinvestor:Betaisamoreorlessusefulmeasureofpastpricefluctuationsofcommonstocks.Whatbothersmeisthatauthoritiesnowequatethebetaideawiththeconceptofrisk.Pricevariabilityyes;riskno.Realinvestmentriskismeasurednotbythepercentthatastockmaydeclineinpriceinrelationtothegeneralmarketinagivenperiod,butthedangerofalossofqualityandearningpowerthrougheconomicchangesordeteriorationofmanagement.Isbetatherealsourceofrisk?5.FirstconsiderationsaboutthelimitationsofCAPMDrEkaterinaSvetlovaβdoesn‘texplainthevarianceIsCAPMjustCRAP(completelyredundantassetpricing)?Montier(2007):“Institutionalmoneymanagersdon‘tthinkintermsofvarianceasadescriptionofrisk.NeveryethaveImetalongonlyinvestorwhocaresaboutup-sidestandarddeviation;thisgetslumpedintoreturn.”“Anentireindustryappearstohavearisenobsessedwithαandβ.“Fama/French(2004):
?TheCAPM,likeMarkowitz’(1952,1959)portfoliomodelonwhichitisbuilt,isneverthelessatheoreticaltourdeforce.WecontinuetoteachtheCAPMasanintroductiontothefundamentalconceptsofportfoliotheoryandassetpricing,tobebuiltonbymorecomplicatedmodelslikeMerton’s(1973)ICAPM.Butwealsowarnstudentsthatdespiteitsseductivesimplicity,theCAPM’sempiricalproblemsprobablyinvalidateitsuseinapplications.”5.FirstconsiderationsaboutthelimitationsofCAPMDrEkaterinaSvetlovaIsCAPMjustCRAP(completelyReferencesBodie,KaneandMarkus(2014),Investments,McGrauwHill,section7.3andchapter9Perold,Andre(2004),TheCapitalAssetPricingModel,JournalofEconomicPerspectives18(3),pp.773-806.DrEkaterinaSvetlovaReferencesBodie,KaneandMarkFoundationsof
FinancialAnalysisandInvestmentsLecture3: CapitalAssetPricingModel(CAPM)DrEkaterinaSvetlovaFoundationsof
FinancialAnalToday‘slectureBriefrevision:Lecture2Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateMPTandCAPM:PreliminaryremarksTheCapitalAssetPricingModel(CAPM)FirstconsiderationsaboutthelimitationsofCAPMDrEkaterinaSvetlovaToday‘slectureBriefrevision:TheportfolioconsistsoftworiskyassetsD(debt)andE(equity)TheirweightsintheportfolioareWeconstructriskyportfoliosvaryingtoprovidethelowestpossibleriskforanygivenlevelofexpectedreturnE(rp)=wDE(rD)+wEE(rE)
DrEkaterinaSvetlovaxD
and
xE(xD+xE=1;xD≥0,xE≥0)xD
and
xE Cov(rD,rE)=DEDESuccessofdiversificationdependsonthecorrelationcoefficientBodieetal.2014,Ch.71.Briefrevision:Lecture2
TheportfolioconsistsoftwoDrEkaterinaSvetlovaDebtEquityExpectedreturnE(r)8%13%Standarddeviation12%20%Bodieetal.(2014),Table7.1,p.208Bodieetal.(2014),Table7.3,p.211ABBodieetal.(2014),p.2141.Briefrevision:Lecture2
DrEkaterinaSvetlovaDebtEquitDrEkaterinaSvetlovaDebtEquityExpectedreturnE(r)8%13%Standarddeviation12%20%Bodieetal.(2014),Table7.1,p.208Bodieetal.(2014),Table7.3,p.211WhenρDE=-1,
WhenρDE=0,
1.Briefrevision:Lecture2
DrEkaterinaSvetlovaDebtEquit1.Briefrevision:Lecture2
Source:Bodieetal.2014:p.220DrEkaterinaSvetlova1.Briefrevision:Lecture2
SDrEkaterinaSvetlovaDiversifiable(nonsystematic)riskvsundiversifiable(systematic)risk1.Briefrevision:Lecture2
Bodieetal.(2014),p.207DrEkaterinaSvetlovaDiversifiDrEkaterinaSvetlovaHowdoesdiversificationmatter?DrEkaterinaSvetlovaHowdoesDrEkaterinaSvetlovaSponsorsTrusteesTheInvestmentManagementFirmInvestmentconsultantstheTampafirefightersandpoliceofficerspensionfundCityofTampa,FloridaHaroldJ.BowenIIIHowdoesdiversificationmatter?Asforbeingdiversified,whichisthemantraofnearlyallinstitutionalmoneymanagersandconsultants,[theTampafund]isn’t.…[T]hefund’sassetsareconcentratedinarelativelysmallnumberofstocksandfixed-incomeinvestments.Inshort,theTampapensionfundprettymuchbreaksalltheconventionalrulesoffundmanagement.DrEkaterinaSvetlovaSponsorsT2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlova2.Mean-varianceoptimizatiUnlimitedborrowingandlendingatarisk-freerate:Risklessassetisanassetwithacertainreturnforthegiventimehorizon.Forexample:USTreasurybondsthatautomaticallyadjustforinflation(TIPS:Treasuryinflationprotectedsecurities)orshorttermUSTreasurybills(UST-bills)Standarddeviationofthereturn:σ=0
DrEkaterinaSvetlova2.Mean-varianceoptimizationwithunlimitedborrowingandlending atarisk-freerateUnlimitedborrowingandlendinIfyouinvestinassetHandrisklessasset:xHandxf=1-xHErp=(1-xH)Rf+xHRH=
Rf+xH(ErH-Rf)σp=(1-xH)2σf+xH2σH2+2xH(1-xH)ρfHσfσHAsσf=0,weobtain:σp=xHσH2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004IfyouinvestinassetHandrDrEkaterinaSvetlovaCombiningequationsforportfolioreturnandrisk,weobtain:
ErH-Rf Erp=Rf+ σp
σH2.Mean-varianceoptimizationwithunlimitedborrowingandlending atarisk-freerateSource:Perold2004DrEkaterinaSvetlovaCombining
ErH-Rf
σHTheslope:Sharperatio(ErH-Rf)Riskpremium2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004
Theslope:Sharperatio(ErHSharperatioofassetH:(12%-5%)/40%=0.175Important:allcombinationsofassetHwithrisk-freeborrowingandlendinghavethesameSharperatio:itistheslopeofastraightlineSharperatioofassetM:(10%-5%)/20%=0.252.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004SharperatioofassetH:ImportUseofSharperatioinpractice:ShaperatioisusedtomeasuretheperformanceofaportfolioAdvantage:theriskadjustedperformancemeasurement2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaUseofSharperatioinpracticSharperatioofH<SharperatioofMThecombinationofrisk-freeassetandMdominatesthecombinationofrisk-freeassetandH2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004SharperatioofH<SharperatHowmuchofeachriskyassetshouldoneholdintheportfolio?Sharperatio:0.305(higherthan0.25forMand0.175forH)AllinvestorswillholdassetsMandHinproportions74/26Newefficiencylinewhenrisk-freelending/borrowingisallowed2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004CorrelationbetweenMandHassumedtobezeroHowmuchofeachriskyassetsIncaseofmanyriskyassets:Tobinseparationtheorem:Portfoliochoiceproblemcanbeseparatedintwotasks:IdentifytheoptimalriskyportfolioIdentifythecapitalallocationbetweenriskyandrisklessinvestmentsRiskaversionRiskseeking3.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaSource:Perold2004Incaseofmanyriskyassets:TUseofTobinseparationinpractice:
2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaUseofTobinseparationinpraCapitalMarketLine(CML)=setofpotentialallocationsbetweenariskyassetandano-riskyasset(oraportfoliothatcontainsonlyriskyassetsandrisk-freeassets)MM–themarketportfolioAllinvestorsholdportfolioM(notdependentoninvestors’toleranceforrisk)
Themarketportfolioistheonewherethesupplyequalsdemand(marketclearing)2.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlovaCapitalMarketLine(CML)=se
3.Mean-varianceoptimizationwithunlimitedborrowingandlendingatarisk-freerateDrEkaterinaSvetlova
3.Mean-varianceoptimizat
ErM-Rf ErP=Rf+ σP
σMMarketpriceofriskTheamountofriskintheportfolioAllrationalinvestorswillholdthesamemarketportfolio(M)ForanyefficientportfolioontheCMLapplies:Generalformula:Expectedreturn=(Priceoftime)+(Priceofrisk)x(Amountofrisk)2.Mean-varianceoptimizationwithunlimitedborrowingandlending atarisk-freerateDrEkaterinaSvetlovaMarketpriceofriskTheamount3.MPTandCAPM:PreliminaryremarksDrEkaterinaSvetlova3.MPTandCAPM:Preliminaryr3.MPTandCAPM:preliminaryremarksPortfoliotheory(normative): givenexpectations(expectedreturns,volatilities,correlations) Howshouldarisk-averseinvestorstructureanefficientportfolio?Howtoachieveanoptimaltrade-offbetweenriskandreturn?(differencesinexpectationscompositionofthetangentialportfolio)TheCapitalAssetPricingModel(positive): underveryrestrictiveassumptionswhatthemarketshouldlooklikeinequilibrium?
CAPMidentifiesaportfoliothatmustbeefficientifassetpricesaretoclearthemarketofallassets(demandforsecurities=supply)
CAPMisanequilibriummodel
DrEkaterinaSvetlova3.MPTandCAPM:preliminaryThemodelgivesusaprecisepredictionoftherelationshipthatweshouldobservebetweentheriskofanassetanditsexpectedreturninequilibriumFunctionsoftheCAPMmodel:Toprovideabenchmarkrateofreturnforevaluatinginvestments(“fair”returngivenarisk)Tomakeaguessfornewsecurities(e.g.,IPOs)Tomeasuretheriskofanindividualsecurity3.MPTandCAPM:preliminaryremarksDrEkaterinaSvetlovaThemodelgivesusaprecisepAllinvestorsaremean-varianceoptimizersandestimatetheirportfoliosaccordingtoE(R)andvariance(allMPTassumptionsapply)AllinvestorshavehomogeneousexpectationsconcerningE(R),VarianceundCovariances(everyinvestorhasthesamerisk-returnexpectationforanygivenstock)identifyefficientfrontierCapitalmarketsareperfect(allassetsareinfinitelydivisable,therearenotransactioncosts,notaxes,allinvestorsarepricetakersandhaveanequalaccesstomarket/informationandinvestmentopportunities)Thereistheunlimitedborrowingandlendingatarisk-freerateofinterestsCAPMassumptions3.MPTandCAPM:preliminaryremarksDrEkaterinaSvetlovaAllinvestorsaremean-varianc4.TheCapitalAssetPricingM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基建科工程施工范本合同
- 三農(nóng)村人居環(huán)境整治實施方案
- 公務(wù)車輛定點維修合同
- 法人向公司借款合同
- 經(jīng)典房地產(chǎn)開發(fā)的合同
- 編程語言高級應(yīng)用作業(yè)指導(dǎo)書
- 養(yǎng)殖業(yè)專業(yè)作業(yè)指導(dǎo)書
- 企業(yè)智能核能技術(shù)與應(yīng)用作業(yè)指導(dǎo)書
- 軟件技術(shù)開發(fā)與測試作業(yè)指導(dǎo)書
- 高港區(qū)二手房買賣合同
- (新版)山東省物流工程師職稱考試參考試題庫-下(多選、判斷題)
- 貨運有限公司2024年春節(jié)后復(fù)工復(fù)產(chǎn)安全生產(chǎn)方案
- 食品安全員專業(yè)知識考試題庫(含答案)
- 和客戶簽回款協(xié)議書范本
- 2024年孝感中小學(xué)教師招聘真題
- 社交禮儀-儀態(tài)禮儀
- 2024暑期夏日露營潮趣互動音樂節(jié)(唱享潮夏旋律季)活動策劃方案
- 臨床成人ICU患者外周動脈導(dǎo)管管理要點
- 2024年長沙衛(wèi)生職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案
- 死亡病例討論模板
- 《讓學(xué)生創(chuàng)造著長大》讀書心得
評論
0/150
提交評論