![2022屆山西省晉中靈石縣聯(lián)考中考數(shù)學最后沖刺濃縮精華卷含解析_第1頁](http://file4.renrendoc.com/view/c5a70daae5b92d9ba0602676b5e059f8/c5a70daae5b92d9ba0602676b5e059f81.gif)
![2022屆山西省晉中靈石縣聯(lián)考中考數(shù)學最后沖刺濃縮精華卷含解析_第2頁](http://file4.renrendoc.com/view/c5a70daae5b92d9ba0602676b5e059f8/c5a70daae5b92d9ba0602676b5e059f82.gif)
![2022屆山西省晉中靈石縣聯(lián)考中考數(shù)學最后沖刺濃縮精華卷含解析_第3頁](http://file4.renrendoc.com/view/c5a70daae5b92d9ba0602676b5e059f8/c5a70daae5b92d9ba0602676b5e059f83.gif)
![2022屆山西省晉中靈石縣聯(lián)考中考數(shù)學最后沖刺濃縮精華卷含解析_第4頁](http://file4.renrendoc.com/view/c5a70daae5b92d9ba0602676b5e059f8/c5a70daae5b92d9ba0602676b5e059f84.gif)
![2022屆山西省晉中靈石縣聯(lián)考中考數(shù)學最后沖刺濃縮精華卷含解析_第5頁](http://file4.renrendoc.com/view/c5a70daae5b92d9ba0602676b5e059f8/c5a70daae5b92d9ba0602676b5e059f85.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.計算a?a2的結果是()A.a(chǎn)B.a(chǎn)2C.2a2D.a(chǎn)32.關于的方程有實數(shù)根,則滿足()A. B.且 C.且 D.3.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘4.大箱子裝洗衣粉36千克,把大箱子里的洗衣粉分裝在4個大小相同的小箱子里,裝滿后還剩余2千克洗衣粉,則每個小箱子裝洗衣粉(
)A.6.5千克B.7.5千克C.8.5千克D.9.5千克5.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)2+a2=a3 D.a(chǎn)6÷a2=a36.滿足不等式組的整數(shù)解是()A.﹣2 B.﹣1 C.0 D.17.如圖,矩形ABCD中,AB=3,AD=4,連接BD,∠DBC的角平分線BE交DC于點E,現(xiàn)把△BCE繞點B逆時針旋轉(zhuǎn),記旋轉(zhuǎn)后的△BCE為△BC′E′.當線段BE′和線段BC′都與線段AD相交時,設交點分別為F,G.若△BFD為等腰三角形,則線段DG長為()A. B. C. D.8.若代數(shù)式,,則M與N的大小關系是()A. B. C. D.9.如圖1是2019年4月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個數(shù)(如圖2),下列表示a,b,c,d之間關系的式子中不正確的是()A.a(chǎn)﹣d=b﹣c B.a(chǎn)+c+2=b+d C.a(chǎn)+b+14=c+d D.a(chǎn)+d=b+c10.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發(fā)h后與甲相遇 D.甲比乙晚到B地2h11.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.12.“可燃冰”的開發(fā)成功,拉開了我國開發(fā)新能源的大門,目前發(fā)現(xiàn)我國南?!翱扇急眱Υ媪窟_到800億噸,將800億用科學記數(shù)法可表示為()A.0.8×1011 B.8×1010 C.80×109 D.800×108二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式組的解集是_____;14.如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.15.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.16.點(1,–2)關于坐標原點O的對稱點坐標是_____.17.如圖,Rt△ABC的直角邊BC在x軸負半軸上,斜邊AC上的中線BD的反向延長線交y軸正半軸于點E,雙曲線y=(x<0)的圖象經(jīng)過點A,S△BEC=8,則k=_____.18.比較大?。篲____1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:1+xx2-120.(6分)某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數(shù),成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀,這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分的選手人數(shù)分別為a、b.隊別平均分中位數(shù)方差合格率優(yōu)秀率七年級6.7m3.4190%n八年級7.17.51.6980%10%(1)請依據(jù)圖表中的數(shù)據(jù),求a、b的值;(2)直接寫出表中的m、n的值;(3)有人說七年級的合格率、優(yōu)秀率均高于八年級;所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.21.(6分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經(jīng)了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(shù)(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數(shù)n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).①當x=90時,求出乙隊修路的天數(shù);②求y與x之間的函數(shù)關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.22.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,連接EF.(1)如圖,點D在線段CB上時,①求證:△AEF≌△ADC;②連接BE,設線段CD=x,BE=y,求y2﹣x2的值;(2)當∠DAB=15°時,求△ADE的面積.23.(8分)某中學九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時出發(fā),相向而行.設步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關系式;求甲、乙兩班學生出發(fā)后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?24.(10分)第二十四屆冬季奧林匹克運動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區(qū)舉辦了一次冬奧知識網(wǎng)上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調(diào)查,過程如下,請補充完整.[收集數(shù)據(jù)]從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績?nèi)缦?甲:乙:[整理、描述數(shù)據(jù)]按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):學校人數(shù)成績甲乙(說明:優(yōu)秀成績?yōu)?,良好成績?yōu)楹细癯煽優(yōu)?)[分析數(shù)據(jù)]兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如下表所示:學校平均分中位數(shù)眾數(shù)甲乙其中.[得出結論](1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是_校的學生;(填“甲”或“乙”)(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績?yōu)閮?yōu)秀的概率為_;(3)根據(jù)以上數(shù)據(jù)推斷一所你認為競賽成績較好的學校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)25.(10分)為了提高服務質(zhì)量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數(shù)量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?26.(12分)解方程組:.27.(12分)如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的長;設,,求向量(用向量、表示).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】a·a2=a3.故選D.2、A【解析】
分類討論:當a=5時,原方程變形一元一次方程,有一個實數(shù)解;當a≠5時,根據(jù)判別式的意義得到a≥1且a≠5時,方程有兩個實數(shù)根,然后綜合兩種情況即可得到滿足條件的a的范圍.【詳解】當a=5時,原方程變形為-4x-1=0,解得x=-;當a≠5時,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5時,方程有兩個實數(shù)根,所以a的取值范圍為a≥1.故選A.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了一元二次方程的定義.3、D【解析】分析:根據(jù)圖象得出相關信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關鍵.4、C【解析】【分析】設每個小箱子裝洗衣粉x千克,根據(jù)題意列方程即可.【詳解】設每個小箱子裝洗衣粉x千克,由題意得:4x+2=36,解得:x=8.5,即每個小箱子裝洗衣粉8.5千克,故選C.【點睛】本題考查了列一元一次方程解實際問題,弄清題意,找出等量關系是解答本題的關鍵.5、B【解析】試題解析:A.故錯誤.B.正確.C.不是同類項,不能合并,故錯誤.D.故選B.點睛:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.6、C【解析】
先求出每個不等式的解集,再根據(jù)不等式的解集求出不等式組的解集即可.【詳解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式組的解集為-1<x≤0.5,∴不等式組的整數(shù)解為0,故選C.【點睛】本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集找出不等式組的解集是解此題的關鍵.7、A【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,則AF=4-=.再過G作GH∥BF,交BD于H,證明GH=GD,BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【詳解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.過G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,設DG=GH=BH=x,則FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故選A.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),矩形的性質(zhì),等腰三角形的性質(zhì),勾股定理,平行線分線段成比例定理,準確作出輔助線是解題關鍵.8、C【解析】∵,∴,∴.故選C.9、A【解析】
觀察日歷中的數(shù)據(jù),用含a的代數(shù)式表示出b,c,d的值,再將其逐一代入四個選項中,即可得出結論.【詳解】解:依題意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,選項A符合題意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,選項B不符合題意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,選項C不符合題意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,選項D不符合題意.故選:A.【點睛】考查了列代數(shù)式,利用含a的代數(shù)式表示出b,c,d是解題的關鍵.10、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發(fā)一小時,用1小時走完全程,可得速度為40km/h.故選B11、B【解析】
根據(jù)題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.12、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:將800億用科學記數(shù)法表示為:8×1.
故選:B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≤1【解析】分析:分別求出不等式組中兩個不等式的解集,找出解集的公共部分即可確定出不等式組的解集.詳解:,由①得:x由②得:.則不等式組的解集為:x.故答案為x≤1.點睛:本題主要考查了解一元一次不等式組.14、【解析】
由矩形的性質(zhì)可得AB=CD=4,BC=AD=6,AD//BC,由平行線的性質(zhì)和折疊的性質(zhì)可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的長,即可求△AFC的面積.【詳解】解:四邊形ABCD是矩形,,,折疊,在中,,,.故答案為:.【點睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理,利用勾股定理求AF的長是本題的關鍵.15、【解析】
首先由折疊的性質(zhì)與矩形的性質(zhì),證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數(shù)的性質(zhì)即可求得MF的長,又由中位線的性質(zhì)求得EM的長,則問題得解【詳解】如圖,設與AD交于N,EF與AD交于M,根據(jù)折疊的性質(zhì)可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質(zhì)可得:,,,,,故答案為.【點睛】本題考查了折疊的性質(zhì),全等三角形的判定與性質(zhì),三角函數(shù)的性質(zhì)以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數(shù)形結合思想與方程思想的應用.16、(-1,2)【解析】
根據(jù)兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】A(1,-2)關于原點O的對稱點的坐標是(-1,2),
故答案為:(-1,2).【點睛】此題主要考查了關于原點對稱的點的坐標,關鍵是掌握點的坐標的變化規(guī)律.17、1【解析】
∵BD是Rt△ABC斜邊上的中線,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴∴AB?OB=BC?OE,∵S△BEC=×BC?OE=8,∴AB?OB=1,∴k=xy=AB?OB=1.18、【解析】
先將1化為根號的形式,根據(jù)被開方數(shù)越大值越大即可求解.【詳解】解:,,,故答案為>.【點睛】本題考查實數(shù)大小的比較,比較大小時,常用的方法有:作差法,作商法,如果有一個是二次根式,要把另一個也化為二次根式的形式,根據(jù)被開方數(shù)的大小進行比較.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、3+3【解析】
先化簡分式,再計算x的值,最后把x的值代入化簡后的分式,計算出結果.【詳解】原式=1+x=1+xx+1=1+1=xx-1當x=2cos30°+tan45°=2×32=3+1時.xx-1=【點睛】本題主要考查了分式的加減及銳角三角函數(shù)值.解決本題的關鍵是掌握分式的運算法則和運算順序.20、(1)a=5,b=1;(2)6;20%;(3)八年級平均分高于七年級,方差小于七年級.【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)求出a與b的值即可;(2)根據(jù)(1)a與b的值,確定出m與n的值即可;(3)從方差,平均分角度考慮,給出兩條支持八年級隊成績好的理由即可.試題解析:(1)根據(jù)題意得:解得a=5,b=1;(2)七年級成績?yōu)?,6,6,6,6,6,7,8,9,10,中位數(shù)為6,即m=6;優(yōu)秀率為=20%,即n=20%;(3)八年級平均分高于七年級,方差小于七年級,成績比較穩(wěn)定,故八年級隊比七年級隊成績好.考點:1.條形統(tǒng)計圖;2.統(tǒng)計表;3.加權平均數(shù);4.中位數(shù);5.方差.21、(1)35,50;(2)①12;②y=﹣x+;③150米.【解析】
(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;(2)①根據(jù):甲隊先修建的長度+(甲隊每天修建長度+乙隊每天修建長度)×兩隊合作時間=總長度,列式計算可得;②由①中的相等關系可得y與x之間的函數(shù)關系式;③根據(jù):甲隊先修x米的費用+甲、乙兩隊每天費用×合作時間≤22800,列不等式求解可得.【詳解】解:(1)甲隊單獨完成這項工程所需天數(shù)n=1050÷30=35(天),則乙單獨完成所需天數(shù)為21天,∴乙隊每天修路的長度m=1050÷21=50(米),故答案為35,50;(2)①乙隊修路的天數(shù)為=12(天);②由題意,得:x+(30+50)y=1050,∴y與x之間的函數(shù)關系式為:y=﹣x+;③由題意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若總費用不超過22800元,甲隊至少先修了150米.【點睛】本題考查了一次函數(shù)的應用,解題的關鍵是熟練的掌握一次函數(shù)的應用.22、(1)①證明見解析;②25;(2)為或50+1.【解析】
(1)①在直角三角形ABC中,由30°所對的直角邊等于斜邊的一半求出AC的長,再由F為AB中點,得到AC=AF=5,確定出三角形ADE為等邊三角形,利用等式的性質(zhì)得到一對角相等,再由AD=AE,利用SAS即可得證;②由全等三角形對應角相等得到∠AEF為直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y關于x的函數(shù)解析式;(2)分兩種情況考慮:①當點在線段CB上時;②當點在線段CB的延長線上時,分別求出三角形ADE面積即可.【詳解】(1)、①證明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=AB=5,∵點F是AB的中點,∴AF=AB=5,∴AC=AF,∵△ADE是等邊三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF≌△ADC,∴∠AEF=∠C=90°,EF=CD=x,又∵點F是AB的中點,∴AE=BE=y,在Rt△AEF中,勾股定理可得:y2=25+x2,∴y2﹣x2=25.(2)①當點在線段CB上時,由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,∴AD2=50,△ADE的面積為;②當點在線段CB的延長線上時,由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt△ACD中,勾股定理可得AD2=200+100,綜上所述,△ADE的面積為或.【點睛】此題考查了勾股定理,全等三角形的判定與性質(zhì),以及等邊三角形的性質(zhì),熟練掌握勾股定理是解本題的關鍵.23、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】
(1)由圖象直接寫出函數(shù)關系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【詳解】(1)根據(jù)圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數(shù)關系是:y1=4x,乙班從B地出發(fā)勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數(shù)關系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設甲、乙兩班學生出發(fā)后,x小時相遇,則4x+5x=1,解得x=.當x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.24、80;(1)甲;(2);(3)乙學校競賽成績較好,理由見解析【解析】
首先根據(jù)乙校的成績結合眾數(shù)的定義即可得出a的值;(1)根據(jù)兩個學校成績的中位數(shù)進一步判斷即可;(2)根據(jù)概率的定義,結合乙校優(yōu)秀成績的概率進一步求解即可;(3)根據(jù)題意,從平均數(shù)以及中位數(shù)兩方面加以比較分析即可.【詳解】由乙校成績可知,其中80出現(xiàn)的次數(shù)最多,故80為該組數(shù)據(jù)的眾數(shù),∴a=80,故答案為:80;(1)由表格可知,甲校成績的中位數(shù)為60,乙校成績的中位數(shù)為75,∵小明這次競賽得了分,在他們學校排名屬中游略偏上,∴小明為甲校學生,故答案為:甲;(2)乙校隨便抽取一名學生的成績,該學生成績?yōu)閮?yōu)秀的概率為:,故答案為:;(3)乙校競賽成績較好,理由如下:因為乙校的平均分高于甲校的平均分說明平均水平高,乙校的中位數(shù)75高于甲校的中位數(shù)65,說明乙校分數(shù)不低于70分的學生比甲校多,綜上所述,乙校競賽成績較好.【點睛】本題主要考查了眾數(shù)、中位數(shù)、平均數(shù)的定義與簡單概率的計算的綜合運用,熟練掌握相關概念是解題關鍵.25、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)業(yè)合伙協(xié)議合同范例
- 養(yǎng)殖意向合同范例
- 分期購合同范例
- 個人車輛貸款合同范例
- 全款買房電子合同范例
- 代加工采購合同范例
- 買賣購車合同范本
- 公司車位合同范例
- 2024年01月江蘇2024年宜興農(nóng)商銀行寒假大學生社會實踐活動筆試歷年參考題庫附帶答案詳解
- 農(nóng)采購合同范例
- 賬期協(xié)議書賬期合同書
- 信息技術課程標準2023版:義務教育小學階段
- 2024年常德職業(yè)技術學院單招職業(yè)適應性測試題庫完整
- 天津市河東區(qū)2023-2024學年九年級上學期期末數(shù)學試題
- 工程防滲漏培訓課件
- 黑龍江省哈爾濱市2024年數(shù)學八年級下冊期末經(jīng)典試題含解析
- 牛津3000核心詞匯表注釋加音標1-4 完整版
- 高中英語以讀促寫教學策略與實踐研究課件
- 金屬表面處理中的冷噴涂技術
- 河北省石家莊市2023-2024學年高一上學期期末教學質(zhì)量檢測化學試題(解析版)
- 黑龍江省齊齊哈爾市2023-2024學年高一上學期1月期末英語試題(含答案解析)
評論
0/150
提交評論