版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
Ch8ExpertSystemDr.BernardChenPh.D.UniversityofCentralArkansasSpring2019Ch8ExpertSystem1OutlineExpertSystemintroductionRule-BasedExpertSystemGoalDrivenApproachDataDrivenApproachModel-BasedExpertSystemOutlineExpertSystemintroduc2ExpertSystemIntroductionHumanexpertsareabletoperformatasuccessfullevelbecausetheyknowalotabouttheirareasofexpertiseAnExpertSystemuseknowledgespecifictoaproblemdomaintoprovide“expertquality”performanceinthatapplicationareaAswithskilledhumans,expertsystemstendtobespecialists,focusingonanarrowsetofproblemsExpertSystemIntroductionHum3ExpertSystemIntroductionBecauseoftheirheuristic,knowledgeintensivenature,expertsystemsgenerally:SupportinspectionoftheirreasoningprocessesAlloweasymodificationinaddinganddeletingskillsfromknowledgebaseReasonheuristically,usingknowledgetogetusefulsolutionsExpertSystemIntroductionBeca4ExpertSystemIntroductionExpertsystemsarebuilttosolveawiderangeofproblemsindomainsuchasmedicine,math,engineering,chemistry,geology,computerscience,business,low,defenseandeducationTheseprogramsaddressavarietyofproblems,thefollowinglistisasummaryofgeneralexpertsystemproblemcategories:ExpertSystemIntroductionExpe5ExpertSystemIntroductionInterpretation---forminghigh-levelconclusionsfromcollectionsofrawdataPrediction---projectingprobableconsequencesofgivensituationsDiagnosis---determiningthecauseofmalfunctionsbasedonobservablesymptomsExpertSystemIntroductionInte6ExpertSystemIntroductionDesign---findingaconfigurationofsystemcomponentsthatmeetsperformancegoalswhilesatisfyingasetofdesignconstrainsPlanning---devisingasequenceofactionsthatwillachieveasetofgoalsgivenstartingconditionsandruntimeconstrainsExpertSystemIntroductionDesi7TheDesignofRule-BasedExpertSystemarchitectureofatypicalexpertsystemforaparticularproblemdomain.TheDesignofRule-BasedExper8TheDesignofRule-BasedExpertSystemThehearoftheexpertsystemistheknowledgebase,whichcontainstheknowledgeofaparticularapplicationdomainInarule-basedexpertsystem,thisknowledgeismostoftenrepresentedintheformofif…then…Inthefigure,theknowledgebasecontainsbothgeneralandcase-specificinformationTheDesignofRule-BasedExper9TheDesignofRule-BasedExpertSystemTheinferenceengineappliestheknowledgetothesolutionofactualproblemsItisimportanttomaintainthisseparationoftheknowledgeandinferenceenginebecause:MakesitpossibletorepresentknowledgeinamorenaturalfashionExpertsystembuildercanfocusoncapturingandorganizingproblem-solvingknowledgethanthedetailsofcodeimplementationAllowchangetobemadeeasilyAllowsthesamecontrolandinterfacesoftwaretobeusedindifferentsystemsTheDesignofRule-BasedExper10SelectingaproblemExpertSysteminvolveaconsiderableinvestmentofmoneyandhumaneffortResearchershavedevelopedguidelinestodeterminewhetheraproblemisappropriateforexpertsystemsolution:TheneedforthesolutionjustifiesthecostandeffortsofbuildinganexpertsystemHumanexpertiseisnotavailableinallsituationwhereitisneededSelectingaproblemExpertSyst11SelectingaproblemTheproblemdomainiswellstructuredanddoesnotrequirecommonsensereasoningTheproblemmaynotbesolvedusingtraditionalcomputingmethodsCooperativeandarticulateexpertsexistTheproblemispropersizeandscopeSelectingaproblemTheproblem12NASAExampleNASAhassupporteditspresenceinspacebydevelopingafleetofintelligentspaceprobesthatautonomouslyexplorethesolarsystemToachievesuccessthroughyearsintheharshconditionsofspacetravel,acraftneedstobeabletoradicallyreconfigureitscontrolregimeinresponsetofailuresandthenplanaroundthesefailuresduringitremainingflightNASAExampleNASAhassupported13NASAExampleFinally,NASAexpectsthatthesetofpotentialfailurescenariosandpossibleresponseswillbemuchtoolargetousesoftwarethatsupportspreflightenumerationofallcontingenciesLivingstoneisanimplementedkernelforamodel-basedreactiveself-configuringautonomoussystemNASAExampleFinally,NASAexpe14NASAExampleAlong-heldvisionofmodel-basedreasoninghasbeentouseasinglecentralizedmodeltosupportavarietyofengineeringtasksThetasksincludekeeping-trackofdevelopingplansConfirminghardwaremodesReconfiguringhardwareDetectinganomaliesDiagnosisFaultrecoveryNASAExampleAlong-heldvision15NASAExampleNASAExample16NASAExampleItconsistofaheliumtankRegulatorsPropellanttanksApairofmainengineLatchvalvesPyrovalvesNASAExampleItconsistof17NASAExampleTheheliumtankpressurizesthetwopropellanttanks,withtheregulatorsactingtoreducethehighheliumpressureWhenpropellantpathtoamainengineareopen,thepressurizedtankforcesfuelandoxidizerintothemainenginetoproducethrustThepyrovalveistoisolatepartsofthemainenginesubsystemuntiltheyareneeded,ortopermanentlyisolatefailedcomponentsThelatchvalvearecontrolledusingvalvedriversandtheaccelerometerNASAExampleTheheliumtankpr18NASAExampleThrustcanbeprovidedbyeitherofthemainenginesandthereareanumberofwaysofopeningpropellantpathstoeithermainengineNASAExampleThrustcanbeprov19NASAExampleSupposethemainenginesubsystemhasbeenconfiguredtoprovidethrustfromtheleftenginebyopeningthelatchvalvesleadingtoitAndsupposethisenginefails(overheating),sothatisfailstoprovidetherequiredthrustToensurethatthedesirethrustisprovided,thespacecraftmustbetransitionedtoanewconfigurationinwhichthrustisnowprovidedbythemainengineontherightsideNASAExampleSupposethemaine20SelectingaproblemTheprimarypeopleinvolvedinbuildinganexpertsystemaretheknowledgeengineer,domainexpert,andenduserThedomainexpertisprimarilyresponsibleforspellingoutskillstoknowledgeengineerItisoftenusefulforknowledgeengineertobeanoviceintheproblemdomainSelectingaproblemTheprimary21Exploratorydevelopmentcycle
Exploratorydevelopmentcycle22ExploratorydevelopmentcycleItisalsounderstoodthattheprototypemaybethrownawayifitbecomestocumbersomeorifthedesignersdecidetochangetheirbasicapproachtotheproblemAnothermajorfeatureofexpertsystemisthattheprogramneedneverbeconsidered“finished”ExploratorydevelopmentcycleI23OutlineExpertSystemintroductionRule-BasedExpertSystemGoalDrivenApproachDataDrivenApproachModel-BasedExpertSystemOutlineExpertSystemintroduc24StrategiesforstatespacesearchIndatadrivensearch,alsocalledforwardchaining,theproblemsolverbeginswiththegivenfactsoftheproblemandsetoflegalmovesforchangingstateThisprocesscontinuesuntil(wehope!!)itgeneratesapaththatsatisfiesthegoalconditionStrategiesforstatespacesea25“tic-tac-toe”
statespacegraph
“tic-tac-toe”statespacegrap26StrategiesforstatespacesearchAnalternativeapproach(GoalDriven)isstartwiththegoalthatwewanttosolveSeewhatrulescangeneratethisgoalanddeterminewhatconditionsmustbetruetousethemTheseconditionsbecomethenewgoalsWorkingbackwardthroughsuccessivesubgoalsuntil(wehopeagain!)itworkbacktoStrategiesforstatespacesea27Rule-BasedExpertSystemRulebasedexpertsystemrepresentproblem-solvingknowledgeasif…then…ItisoneoftheoldesttechniquesforrepresentingdomainknowledgeinanexpertsystemItisalsooneofthemostnaturalandwidelyusedinpracticalandexperimentalexpertsystemRule-BasedExpertSystemRuleb28Rule-BasedExpertSystemInagoal-drivenexpertsystem,thegoalexpressionisinitiallyplacedinworkingmemoryThesystemmatchesruleconclusionswiththegoal,selectingoneruleandplacingitspremisesintheworkingmemoryThiscorrespondstoadecompositionoftheproblems’goalintosimplersubgoalsTheprocesscontinuesinthenextiterationoftheproductionsystem,withthesepremisesbecomingthenewgoalstomatchRule-BasedExpertSystemInag29AunrealExpertSystemExample
Rule1: if theengineisgettinggas,and theenginewillturnover, then theproblemissparkplugs.Rule2: if theenginedoesnotturnover,and thelightsdonotcomeon then theproblemisbatteryorcables.Rule3: if theenginedoesnotturnover,and thelightsdocomeon then theproblemisthestartermotor.Rule4: if thereisgasinthefueltank,and thereisgasinthecarburetor then theengineisgettinggas.AunrealExpertSystemExample30Theproductionsystematthestartofaconsultationinthecar diagnosticexample.
Theproductionsystematthes31Theproductionsystematthestartofaconsultationinthecar diagnosticexample.Threerulesmatchwiththisexpressioninworkingmemory:rule1,2,and3Ifweresolveconflictsinfavorofthelowest-numberedrule,thenrule1willfireThiscauseXtobeboundtothevaluesparkplugsandthepremisesofrule1tobeplacedintheworkingmemoryTheproductionsystematthes32TheproductionsystemafterRule1hasfired.
TheproductionsystemafterRu33TheproductionsystemafterRule1hasfired.Notethattherearetwopremisestorule1,bothofwhichmustbesatisfiedtoprovetheconclusiontrueSonowweneedtofindoutwhetherTheengineisgettinggas,andTheenginewillturnoverWemaythenfirerule4forwhether“Theengineisgettinggas”TheproductionsystemafterRu34ThesystemafterRule4hasfired.Notethestack-basedapproachtogoalreduction.
ThesystemafterRule4hasfi35Theand/orgraphsearchedinthe
cardiagnosisexample,withtheconclusionofRule4matchingthefirstpremiseofRule1.
Theand/orgraphsearchedint36ExplanationandTransparencyinGoal-DrivenReasoningThefollowingdialoguebeginswiththecomputeraskingtheuseraboutthegoalspresentintheworkingmemory:Gasinfueltank?YESGasincarburetor?YESEnginewillturnover?WHYExplanationandTransparencyi37ExplanationandTransparencyinGoal-DrivenReasoningIngeneral,thetwoquestionsansweredbyrule-basedexpertsystemareWHY?andHOW?WHYmeans“whydidyouaskforthatinformation”TheansweristhecurrentrulethattheproductionsystemisattemptingtofireHOWmeans“Howdidyougettheresult”TheansweristhesequenceofrulesthatwereusedtoconcludeagoalExplanationandTransparencyi38ExplanationandTransparencyinGoal-DrivenReasoningThefollowingdialoguebeginswiththecomputeraskingtheuseraboutthegoalspresentintheworkingmemory:Gasinfueltank?YESGasincarburetor?YESEnginewillturnover?WHYIthasbeenestablishedthat:1.Theengineisgettinggas,2.Theenginewillturnover,(weneedtoknow)Sothatwecanmaketheconclusionthat“Thentheproblemisthesparkplugs.”
ExplanationandTransparencyi39ExplanationandTransparencyinGoal-DrivenReasoningGasinfueltank?YesGasincarburetor?YesEnginewillturnover?Why
Ithasbeenestablishedthat:1.Theengineisgettinggas,2.Theenginewillturnover,Thentheproblemisthesparkplugs.
Howtheengineisgettinggas
Thisfollowsfromrule4:ifgasinfueltank,andgasincarburetorthenengineisgettinggas.gasinfueltankwasgivenbytheusergasincarburetorwasgivenbytheuserExplanationandTransparencyi40OutlineExpertSystemintroductionRule-BasedExpertSystemGoalDrivenApproachDataDrivenApproachModel-BasedExpertSystemOutlineExpertSystemintroduc41Data-DrivenReasoningThepreviousexampleexhibitsgoal-drivensearch.Thesearchwasalsodepth-firstsearchBreadth-firstsearchismorecommoninDataDrivenreasoningThealgorithmforthiscategoryissimple:comparethecontentsofworkingmemorywiththeconditionsofeachruleintherulebaseaccordingtotheorderoftherulesData-DrivenReasoningTheprevi42Data-DrivenReasoningIfapieceofinformationthatmakesupthepremiseofaruleisnottheconclusionofsomeotherrule,thenthatfactwillbedeemed“askable”Forexample:theengineisgettinggasisnotaskableinthepremiseofrule1Data-DrivenReasoningIfapiec43AunrealExpertSystemExample
Rule1: if
(notaskable)theengineisgettinggas,and theenginewillturnover, then theproblemissparkplugs.Rule2: if theenginedoesnotturnover,and thelightsdonotcomeon then theproblemisbatteryorcables.Rule3: if theenginedoesnotturnover,and thelightsdocomeon then theproblemisthestartermotor.Rule4: if thereisgasinthefueltank,and thereisgasinthecarburetor then theengineisgettinggas.AunrealExpertSystemExample44Data-DrivenReasoningData-DrivenReasoning45Data-DrivenReasoningThepremise,theengineisgettinggasisNOTaskable,sorule1failsandcontinuetorule2TheenginedoesnotturnoverisaskableSupposetheanswertothisqueryisfalse,so“theenginewillturnover”isplacedinworkingmemoryData-DrivenReasoningThepremi46TheproductionsystemafterevaluatingthefirstpremiseofRule2,whichthenfails.
Theproductionsystemafterev47TheproductionsystemafterevaluatingthefirstpremiseofRule2,whichthenfails.Rule2fails,sincethefirstoftwoANDpremisesisfalse,wemovetorule3Whererule3alsofailsSofinally,wemovetorule4Theproductionsystemafterev48Thedata-drivenproductionsystemafterconsideringRule4,beginningitssecondpassthroughtherules.
Thedata-drivenproductionsys49Thedata-drivenproductionsystemafterconsideringRule4,beginningitssecondpassthroughtherules.Atthispoint,alltheruleshavebeenconsideredWiththenewcontentsofworkingmemory,weconsidertherulesinorderforthesecondroundThedata-drivenproductionsys50OutlineExpertSystemintroductionRule-BasedExpertSystemGoalDrivenApproachDataDrivenApproachModel-BasedExpertSystemOutlineExpertSystemintroduc51Model-BasedExpertSystemHumanexpertiseisanextremelycomplexcombinationof:TheoreticalknowledgeExperiencedbasedproblemsolvingheuristicsExampleofpastproblemsandtheirsolutionsInterpretiveskillsThroughyearsofexperience,humanexpertdevelopverypowerfulrulesfordealingwithcommonlyencounteredsituationsTheserulesareoftenhighly“complied”Model-BasedExpertSystemHuman52Model-BasedExpertSystemInarule-basedexpertsystemexampleforsemiconductorfailureanalysis,adescriptiveapproachmightbaseon:Discolorationofcomponents(burned-out)HistoryoffaultsinsimilardevicesObservationofcomponentbyelectronmicroscopeHowever,approachesthatuserulestolinkobservationsanddiagnosisdonotofferthebenefitsofadeeperanalysisofdevice’sstructureandfunctionModel-BasedExpertSystemIna53Model-BasedExpertSystemAmorerobust,deeplyexplanatoryapproachwouldbeginwithadetailedmodelofthephysicalstructureofthecircuitandequationsdescribingtheexpectedbehaviorofeachcomponentandtheirinteractions.AknowledgebasedreasonerwhoseanalysisisfoundeddirectlyonthespecificationandfunctionalityofaphysicalsystemiscalledaMODEL-BASEDSystemModel-BasedExpertSystemAmor54Model-BasedExpertSystemThemodelbasedsystemtellsitsuserwhattoexpect,andwhenobservationsdifferfromtheseexpectations,itwillleadtoidentificationoffaultsQualitativemodel-basedreasoningincludes:AdescriptionofeachcomponentinthedeviceAdescriptionofthedevices’internalstructureObservationofthedevices’actualperformanceModel-BasedExpertSystemThem55Model-BasedExpertSystemExampleTheexpectedoutputvaluearegivenin()andtheactualoutputsin[]Model-BasedExpertSystemExam56Model-BasedExpertSystemExampleAtF,wehaveaconflictWecheckthedependenciesatthispointanddeterminedADD1,MULT1andMULT2areinvolvedOneofthesethreedevicesmusthaveafault,sowehavethreehypothesestoconsider:EithertheadderbehaviorisbadoroneofitstwoinputswasincorrectModel-BasedExpertSystemExam57Model-BasedExpertSystemExampleAssumingADD1andoneofitsinputXiscorrect(6)AnotherinputYmustbe(4)Continuethisreasoning,YcannotbeMULT2sinceGiscorrectWeareleftwiththehypothesesthatthefaultliesineitherMULT1orADD1Model-BasedExpertSystemExam58Model-BasedExpertSystemExampleFinally,weshouldnotethatintheexample,therewasassumedtobeasinglefaultydevice.TheworldisnotalwaysthisperfectManyotherpossibleproblemsmayoccur:WireisbrokenFaultyconnectiontothemultiplierModel-BasedExpertSystemExam59Ch8ExpertSystemDr.BernardChenPh.D.UniversityofCentralArkansasSpring2019Ch8ExpertSystem60OutlineExpertSystemintroductionRule-BasedExpertSystemGoalDrivenApproachDataDrivenApproachModel-BasedExpertSystemOutlineExpertSystemintroduc61ExpertSystemIntroductionHumanexpertsareabletoperformatasuccessfullevelbecausetheyknowalotabouttheirareasofexpertiseAnExpertSystemuseknowledgespecifictoaproblemdomaintoprovide“expertquality”performanceinthatapplicationareaAswithskilledhumans,expertsystemstendtobespecialists,focusingonanarrowsetofproblemsExpertSystemIntroductionHum62ExpertSystemIntroductionBecauseoftheirheuristic,knowledgeintensivenature,expertsystemsgenerally:SupportinspectionoftheirreasoningprocessesAlloweasymodificationinaddinganddeletingskillsfromknowledgebaseReasonheuristically,usingknowledgetogetusefulsolutionsExpertSystemIntroductionBeca63ExpertSystemIntroductionExpertsystemsarebuilttosolveawiderangeofproblemsindomainsuchasmedicine,math,engineering,chemistry,geology,computerscience,business,low,defenseandeducationTheseprogramsaddressavarietyofproblems,thefollowinglistisasummaryofgeneralexpertsystemproblemcategories:ExpertSystemIntroductionExpe64ExpertSystemIntroductionInterpretation---forminghigh-levelconclusionsfromcollectionsofrawdataPrediction---projectingprobableconsequencesofgivensituationsDiagnosis---determiningthecauseofmalfunctionsbasedonobservablesymptomsExpertSystemIntroductionInte65ExpertSystemIntroductionDesign---findingaconfigurationofsystemcomponentsthatmeetsperformancegoalswhilesatisfyingasetofdesignconstrainsPlanning---devisingasequenceofactionsthatwillachieveasetofgoalsgivenstartingconditionsandruntimeconstrainsExpertSystemIntroductionDesi66TheDesignofRule-BasedExpertSystemarchitectureofatypicalexpertsystemforaparticularproblemdomain.TheDesignofRule-BasedExper67TheDesignofRule-BasedExpertSystemThehearoftheexpertsystemistheknowledgebase,whichcontainstheknowledgeofaparticularapplicationdomainInarule-basedexpertsystem,thisknowledgeismostoftenrepresentedintheformofif…then…Inthefigure,theknowledgebasecontainsbothgeneralandcase-specificinformationTheDesignofRule-BasedExper68TheDesignofRule-BasedExpertSystemTheinferenceengineappliestheknowledgetothesolutionofactualproblemsItisimportanttomaintainthisseparationoftheknowledgeandinferenceenginebecause:MakesitpossibletorepresentknowledgeinamorenaturalfashionExpertsystembuildercanfocusoncapturingandorganizingproblem-solvingknowledgethanthedetailsofcodeimplementationAllowchangetobemadeeasilyAllowsthesamecontrolandinterfacesoftwaretobeusedindifferentsystemsTheDesignofRule-BasedExper69SelectingaproblemExpertSysteminvolveaconsiderableinvestmentofmoneyandhumaneffortResearchershavedevelopedguidelinestodeterminewhetheraproblemisappropriateforexpertsystemsolution:TheneedforthesolutionjustifiesthecostandeffortsofbuildinganexpertsystemHumanexpertiseisnotavailableinallsituationwhereitisneededSelectingaproblemExpertSyst70SelectingaproblemTheproblemdomainiswellstructuredanddoesnotrequirecommonsensereasoningTheproblemmaynotbesolvedusingtraditionalcomputingmethodsCooperativeandarticulateexpertsexistTheproblemispropersizeandscopeSelectingaproblemTheproblem71NASAExampleNASAhassupporteditspresenceinspacebydevelopingafleetofintelligentspaceprobesthatautonomouslyexplorethesolarsystemToachievesuccessthroughyearsintheharshconditionsofspacetravel,acraftneedstobeabletoradicallyreconfigureitscontrolregimeinresponsetofailuresandthenplanaroundthesefailuresduringitremainingflightNASAExampleNASAhassupported72NASAExampleFinally,NASAexpectsthatthesetofpotentialfailurescenariosandpossibleresponseswillbemuchtoolargetousesoftwarethatsupportspreflightenumerationofallcontingenciesLivingstoneisanimplementedkernelforamodel-basedreactiveself-configuringautonomoussystemNASAExampleFinally,NASAexpe73NASAExampleAlong-heldvisionofmodel-basedreasoninghasbeentouseasinglecentralizedmodeltosupportavarietyofengineeringtasksThetasksincludekeeping-trackofdevelopingplansConfirminghardwaremodesReconfiguringhardwareDetectinganomaliesDiagnosisFaultrecoveryNASAExampleAlong-heldvision74NASAExampleNASAExample75NASAExampleItconsistofaheliumtankRegulatorsPropellanttanksApairofmainengineLatchvalvesPyrovalvesNASAExampleItconsistof76NASAExampleTheheliumtankpressurizesthetwopropellanttanks,withtheregulatorsactingtoreducethehighheliumpressureWhenpropellantpathtoamainengineareopen,thepressurizedtankforcesfuelandoxidizerintothemainenginetoproducethrustThepyrovalveistoisolatepartsofthemainenginesubsystemuntiltheyareneeded,ortopermanentlyisolatefailedcomponentsThelatchvalvearecontrolledusingvalvedriversandtheaccelerometerNASAExampleTheheliumtankpr77NASAExampleThrustcanbeprovidedbyeitherofthemainenginesandthereareanumberofwaysofopeningpropellantpathstoeithermainengineNASAExampleThrustcanbeprov78NASAExampleSupposethemainenginesubsystemhasbeenconfiguredtoprovidethrustfromtheleftenginebyopeningthelatchvalvesleadingtoitAndsupposethisenginefails(overheating),sothatisfailstoprovidetherequiredthrustToensurethatthedesirethrustisprovided,thespacecraftmustbetransitionedtoanewconfigurationinwhichthrustisnowprovidedbythemainengineontherightsideNASAExampleSupposethemaine79SelectingaproblemTheprimarypeopleinvolvedinbuildinganexpertsystemaretheknowledgeengineer,domainexpert,andenduserThedomainexpertisprimarilyresponsibleforspellingoutskillstoknowledgeengineerItisoftenusefulforknowledgeengineertobeanoviceintheproblemdomainSelectingaproblemTheprimary80Exploratorydevelopmentcycle
Exploratorydevelopmentcycle81ExploratorydevelopmentcycleItisalsounderstoodthattheprototypemaybethrownawayifitbecomestocumbersomeorifthedesignersdecidetochangetheirbasicapproachtotheproblemAnothermajorfeatureofexpertsystemisthattheprogramneedneverbeconsidered“finished”ExploratorydevelopmentcycleI82OutlineExpertSystemintroductionRule-BasedExpertSystemGoalDrivenApproachDataDrivenApproachModel-BasedExpertSystemOutlineExpertSystemintroduc83StrategiesforstatespacesearchIndatadrivensearch,alsocalledforwardchaining,theproblemsolverbeginswiththegivenfactsoftheproblemandsetoflegalmovesforchangingstateThisprocesscontinuesuntil(wehope!!)itgeneratesapaththatsatisfiesthegoalconditionStrategiesforstatespacesea84“tic-tac-toe”
statespacegraph
“tic-tac-toe”statespacegrap85StrategiesforstatespacesearchAnalternativeapproach(GoalDriven)isstartwiththegoalthatwewanttosolveSeewhatrulescangeneratethisgoalanddeterminewhatconditionsmustbetruetousethemTheseconditionsbecomethenewgoalsWorkingbackwardthroughsuccessivesubgoalsuntil(wehopeagain!)itworkbacktoStrategiesforstatespacesea86Rule-BasedExpertSystemRulebasedexpertsystemrepresentproblem-solvingknowledgeasif…then…ItisoneoftheoldesttechniquesforrepresentingdomainknowledgeinanexpertsystemItisalsooneofthemostnaturalandwidelyusedinpracticalandexperimentalexpertsystemRule-BasedExpertSystemRuleb87Rule-BasedExpertSystemInagoal-drivenexpertsystem,thegoalexpressionisinitiallyplacedinworkingmemoryThesystemmatchesruleconclusionswiththegoal,selectingoneruleandplacingitspremisesintheworkingmemoryThiscorrespondstoadecompositionoftheproblems’goalintosimplersubgoalsTheprocesscontinuesinthenextiterationoftheproductionsystem,withthesepremisesbecomingthenewgoalstomatchRule-BasedExpertSystemInag88AunrealExpertSystemExample
Rule1: if theengineisgettinggas,and theenginewillturnover, then theproblemissparkplugs.Rule2: if theenginedoesnotturnover,and thelightsdonotcomeon then theproblemisbatteryorcables.Rule3: if theenginedoesnotturnover,and thelightsdocomeon then theproblemisthestartermotor.Rule4: if thereisgasinthefueltank,and thereisgasinthecarburetor then theengineisgettinggas.AunrealExpertSystemExample89Theproductionsystematthestartofaconsultationinthecar diagnosticexample.
Theproductionsystematthes90Theproductionsystematthestartofaconsultationinthecar diagnosticexample.Threerulesmatchwiththisexpressioninworkingmemory:rule1,2,and3Ifweresolveconflictsinfavorofthelowest-numberedrule,thenrule1willfireThiscauseXtobeboundtothevaluesparkplugsandthepremisesofrule1tobeplacedintheworkingmemoryTheproductionsystematthes91TheproductionsystemafterRule1hasfired.
TheproductionsystemafterRu92TheproductionsystemafterRule1hasfired.Notethatthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版消防工程聯(lián)合懲戒與誠信協(xié)議3篇
- 個人健身教練服務(wù)協(xié)議書2024年2篇
- 二零二五年度跨境電商留置車輛融資協(xié)議4篇
- 二零二五版?zhèn)}儲中心倉管員安全責(zé)任與應(yīng)急管理協(xié)議3篇
- 2025年度新能源產(chǎn)業(yè)場合作經(jīng)營協(xié)議(綠色未來)4篇
- 2025年度個人住房裝修貸款合同協(xié)議書3篇
- 2025年度商鋪租賃與租賃保證金繳納流程合同4篇
- 2025年度場海參產(chǎn)品冷鏈物流設(shè)備采購及租賃合同4篇
- 2025版路基施工安全生產(chǎn)監(jiān)督管理合同示范4篇
- 專享足療服務(wù)人員工作協(xié)議(2024年度)版
- 中央2025年國務(wù)院發(fā)展研究中心有關(guān)直屬事業(yè)單位招聘19人筆試歷年參考題庫附帶答案詳解
- 外呼合作協(xié)議
- 小學(xué)二年級100以內(nèi)進(jìn)退位加減法800道題
- 2025年1月普通高等學(xué)校招生全國統(tǒng)一考試適應(yīng)性測試(八省聯(lián)考)語文試題
- 《立式輥磨機(jī)用陶瓷金屬復(fù)合磨輥輥套及磨盤襯板》編制說明
- 保險公司2025年工作總結(jié)與2025年工作計劃
- 育肥牛購銷合同范例
- 暨南大學(xué)珠海校區(qū)財務(wù)辦招考財務(wù)工作人員管理單位遴選500模擬題附帶答案詳解
- DB51-T 2944-2022 四川省社會組織建設(shè)治理規(guī)范
- 2024北京初三(上)期末英語匯編:材料作文
- 2024年大型風(fēng)力發(fā)電項目EPC總承包合同
評論
0/150
提交評論